NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner

被引:170
作者
Kajiura, F
Sun, S
Nomura, T
Izumi, K
Ueno, T
Bando, Y
Kuroda, N
Han, HW
Li, Y
Matsushima, A
Takahama, Y
Sakaguchi, S
Mitani, T
Matsumoto, M
机构
[1] Univ Tokushima, Div Mol Immunol, Inst Enzyme Res, Tokushima 7708503, Japan
[2] Univ Tokushima, Dept Mol & Environm Pathol, Sch Med, Tokushima 7708503, Japan
[3] Kyoto Univ, Dept Expt Pathol, Inst Frontier Med Sci, Kyoto, Japan
[4] Univ Tokushima, Div Expt Immunol, Inst Genome Res, Tokushima 770, Japan
[5] RIKEN, Res Ctr Allergy & Immunol, Lab Immune Syst Dev, Tokushima, Japan
[6] RIKEN, Res Ctr Allergy & Immunol, Immunopathol Lab, Yokohama, Kanagawa, Japan
关键词
D O I
10.4049/jimmunol.172.4.2067
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Physical contact between thymocytes and the thymic stroma is essential for T cell maturation and shapes the T cell repertoire in the periphery. Stromal elements that control these processes still remain elusive. We used a mouse strain with mutant NF-kappaB inducing kinase (NIK) to examine the mechanisms underlying the breakdown of self-tolerance. This NIK-mutant strain manifests autoimmunity and disorganized thymic structure with abnormal expression of Rel proteins in the stroma. Production of immunoregulatory T cells that control autoreactive T cells was impaired in NIK-mutant mice. The autoimmune disease seen in NIK-mutant mice was reproduced in athymic nude mice by grafting embryonic thymus from NIK-mutant mice, and this was rescued by supply of exogenous immunoregulatory T cells. Impaired production of immunoregulatory T cells by thymic stroma without normal NIK was associated with altered expression of peripheral tissue-restricted Ags, suggesting an essential role of NIK in the thymic microenvironment in the establishment of central tolerance.
引用
收藏
页码:2067 / 2075
页数:9
相关论文
共 48 条
[1]   Projection of an immunological self shadow within the thymus by the aire protein [J].
Anderson, MS ;
Venanzi, ES ;
Klein, L ;
Chen, ZB ;
Berzins, SP ;
Turley, SJ ;
von Boehmer, H ;
Bronson, R ;
Dierich, A ;
Benoist, C ;
Mathis, D .
SCIENCE, 2002, 298 (5597) :1395-1401
[2]   Origin of regulatory T cells with known specificity for antigen [J].
Apostolou, I ;
Sarukhan, A ;
Klein, L ;
von Boehmer, H .
NATURE IMMUNOLOGY, 2002, 3 (08) :756-763
[3]   Identification and characterization of thymic epithelial progenitor cells [J].
Bennett, AR ;
Farley, A ;
Blair, NF ;
Gordon, J ;
Sharp, L ;
Blackburn, CC .
IMMUNITY, 2002, 16 (06) :803-814
[4]   Thymic medullary epithelial cell differentiation thymocyte emigration, and the control of autoimmunity require lymphoepithelial cross talk via LTβR [J].
Boehm, T ;
Scheu, S ;
Pfeffer, K ;
Bleul, CC .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 198 (05) :757-769
[5]   Regulatory T cells: the physiology of autoreactivity in dominant tolerance and "quality control" of immune responses [J].
Coutinho, A ;
Hori, S ;
Carvalho, T ;
Caramalho, I ;
Demengeot, J .
IMMUNOLOGICAL REVIEWS, 2001, 182 :89-98
[6]   The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways [J].
Dejardin, E ;
Droin, NM ;
Delhase, M ;
Haas, E ;
Cao, YX ;
Makris, C ;
Li, ZW ;
Karin, M ;
Ware, CF ;
Green, DR .
IMMUNITY, 2002, 17 (04) :525-535
[7]  
Derbinski J, 2001, NAT IMMUNOL, V2, P1032, DOI 10.1038/ni723
[8]   NIK-dependent RelB activation defines a unique signaling pathway for the development of Vα14i NKT cells [J].
Elewaut, D ;
Shaikh, RB ;
Hammond, KJL ;
De Winter, H ;
Leishman, AJ ;
Sidobre, S ;
Turovskaya, O ;
Prigozy, TI ;
Ma, L ;
Banks, TA ;
Lo, D ;
Ware, CF ;
Cheroutre, H ;
Kronenberg, M .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 197 (12) :1623-1633
[9]  
FARR AG, 1985, J IMMUNOL, V134, P2971
[10]   Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells (Reprinted from vol 4, pg 330-336, 2003) [J].
Fontenot, Jason D. ;
Gavin, Marc A. ;
Rudensky, Alexander Y. .
JOURNAL OF IMMUNOLOGY, 2017, 198 (03) :986-992