A Cross-Linking Succinonitrile-Based Composite Polymer Electrolyte with Uniformly Dispersed Vinyl-Functionalized SiO2 Particles for Li-Ion Batteries

被引:85
作者
Liu, Kai [1 ,2 ]
Ding, Fei [2 ]
Liu, Jiaquan [3 ]
Zhang, Qingqing [2 ]
Liu, Xingjiang [1 ,2 ]
Zhang, Jinli [1 ]
Xu, Qiang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Inst Power Sources, Natl Key Lab Sci & Technol Power Sources, Tianjin 300384, Peoples R China
[3] George Washington Univ, Sch Engn & Appl Sci, Washington, DC 20052 USA
关键词
solid-state electrolyte; lithium ion battery; succinonitrile; ultraviolet irradiation; cross-linking; RECHARGEABLE LITHIUM BATTERIES; PLASTIC CRYSTAL ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; CYCLING PERFORMANCE; SEPARATOR; NANOPARTICLES; FILLERS; CONDUCTIVITY; TRANSPORT; MEMBRANES;
D O I
10.1021/acsami.6b05882
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A cross-linking succinonitrile (SN)-based composite polymer electrolyte (referred to, as "CLPC CPE"), in which vinyl-functionalized SiO2 particles connect with trimethylolpropane propoxylate triacrylate (TPPTA) monomers by covalent bonds, was prepared by an ultraviolet irradiation (UV-curing) process successfully. Vinyl-functionalized SiO2 particles may react with TPPTA monomers to form a cross-linking network within the SN-based composite polymer electrolyte under ultraviolet irradiation. Vinyl-functionalized SiO2 particles as the fillers of polymer electrolyte may improve both the thermal stability of CLPC-CPE and interfacial compatibility between CLPC-CPE and electrodes effectively. There is no weight loss for CLPC-CPE until above 230 degrees C. The ionic conductivity of CLPC-CPE may reach 7.02 X 10(-4) S cm(-1) at 25 degrees C. CLPC-CPE has no significant oxidation current until up to 4.6 V (vs Li/Li+). The cell of LiFePO4/CLPC-CPE/Li has presented superior cycle performance and rate capability. The cell of LiFePO4/CLPC-CPE/Li may deliver a high discharge capacity of 154.4 mAh g(-1) at a rate of 0.1 C after 100 charge discharge cycles, which is similar than that of :the control cell Of LiFePO4/liquid electrolyte/Li. Furthermore, the cell of LiFePO4/CLPC-CPE/Li can display a high discharge capacity of 112.7 mAh g(-1) at a rate of 2 C, which is higher than that of the cells assembled with other plastic crystal polymer electrolyte reported before obviously.
引用
收藏
页码:23668 / 23675
页数:8
相关论文
共 59 条
[1]   Plastic crystal-lithium batteries: An effective ambient temperature all-solid-state power source [J].
Abouimrane, A ;
Abu-Lebdeb, Y ;
Alarco, PJ ;
Armand, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1028-A1031
[2]   The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors [J].
Alarco, PJ ;
Abu-Lebdeh, Y ;
Abouimrane, A ;
Armand, M .
NATURE MATERIALS, 2004, 3 (07) :476-481
[3]   The enhancement of lithium ion dissociation in polyelectrolyte gels on the addition of ceramic nano-fillers [J].
Byrne, N ;
Efthimiadis, J ;
MacFarlane, DR ;
Forsyth, M .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (01) :127-133
[4]   Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode [J].
Chen, Jingjuan ;
Wang, Suqing ;
Cai, Dandan ;
Wang, Haihui .
JOURNAL OF MEMBRANE SCIENCE, 2014, 449 :169-175
[5]   Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate) [J].
Chen, Weiya ;
Liu, Yanbo ;
Ma, Ying ;
Yang, Wenxiu .
JOURNAL OF POWER SOURCES, 2015, 273 :1127-1135
[6]   Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery [J].
Choi, Eun-Sun ;
Lee, Sang-Young .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (38) :14747-14754
[7]   Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries [J].
Choi, Keun-Ho ;
Kim, Se-Hee ;
Ha, Hyo-Jeong ;
Kil, Eun-Hye ;
Lee, Chang Kee ;
Lee, Sang Bong ;
Shim, Jin Kie ;
Lee, Sang-Young .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (17) :5224-5231
[8]   Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional ("Janus") "soggy sand" electrolytes [J].
Das, Shyamal K. ;
Mandal, Soumit S. ;
Bhattacharyya, Aninda J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1391-1399
[9]   Study of Ion Transport in Lithium Perchlorate-Succinonitrile Plastic Crystalline Electrolyte via Ionic Conductivity and in Situ Cryo-Crystallography [J].
Das, Supti ;
Prathapa, Siriyara J. ;
Menezes, Pramod V. ;
Row, Tayur N. Guru ;
Bhattacharyya, Aninda J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (15) :5025-5031
[10]   Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries [J].
Deng, Fangli ;
Wang, Xiaoen ;
He, Dan ;
Hu, Ji ;
Gong, Chunli ;
Ye, Yun Sheng ;
Xie, Xiaolin ;
Xue, Zhigang .
JOURNAL OF MEMBRANE SCIENCE, 2015, 491 :82-89