On the number of solutions of certain diagonal equations over finite fields

被引:11
作者
Cao, Xiwang [1 ]
Chou, Wun-Seng [2 ,3 ]
Gu, Jingjing [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Natl Chenchi Univ, Dept Math Sci, Taipei 11605, Taiwan
基金
中国国家自然科学基金;
关键词
Covering radius; Cyclic code; Diagonal equation; Finite field; Gauss sum; Waring's problem; COVERING RADIUS; CYCLIC CODES;
D O I
10.1016/j.ffa.2016.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use character sums over finite fields to give formulas for the number of solutions of certain diagonal equations of the form a(1)x(1)(m1) + a(2)x(2)(m2) + ... + a(n)x(n)(mn) = c. We also show that if the value distribution of character sums Sigma(x is an element of Fq) chi (ax(m) + bx), a, b is an element of F-q, is known, then one can obtain the number of solutions of the system of equations {x(1) + x(2) + ... + x(n) = alpha x(1)(m) + x(2)(m) +... + x(n)(m) = beta, for some particular m. We finally apply our results to induce some facts about Waring's problems and the covering radius of certain cyclic codes. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:225 / 252
页数:28
相关论文
共 26 条
[11]   ON THE NATURE OF THE SOLUTIONS OF CERTAIN EQUATIONS IN A FINITE FIELD [J].
HUA, LK ;
VANDIVER, HS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1949, 35 (08) :481-487
[12]   CHARACTERS OVER CERTAIN TYPES OF RINGS WITH APPLICATIONS TO THE THEORY OF EQUATIONS IN A FINITE FIELD [J].
HUA, LK ;
VANDIVER, HS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1949, 35 (02) :94-99
[13]   ON THE EXISTENCE OF SOLUTIONS OF CERTAIN EQUATIONS IN A FINITE FIELD [J].
HUA, LK ;
VANDIVER, HS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1948, 34 (06) :258-263
[14]  
Lidl R., 1983, ENCY MATH APPL, V20
[15]   Divisibility properties for covering radius of certain cyclic codes [J].
Moreno, O ;
Castro, FN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (12) :3299-3303
[16]   SIMULTANEOUS SOLUTIONS TO DIAGONAL EQUATIONS OVER FINITE-FIELDS [J].
SPACKMAN, KW .
JOURNAL OF NUMBER THEORY, 1979, 11 (01) :100-115
[17]  
Sun Q., 1987, P 11 AM MATH SOC, V100, P220, DOI [10.1090/S0002-9939-1987-0884454-6, DOI 10.1090/S0002-9939-1987-0884454-6]
[18]  
Sun Q., 1997, J SICHUAN U NATUR SC, V34, P395
[19]  
Sun Q., 1997, FINITE FIELDS APPL, V3, P175, DOI [10.1006/ffta.1996.0173, DOI 10.1006/FFTA.1996.0173]
[20]  
Sun Q., 1996, FINITE FIELDS APPL, V2, P35, DOI [10.1006/ffta.1996.0003, DOI 10.1006/FFTA.1996.0003]