On the number of solutions of certain diagonal equations over finite fields

被引:11
作者
Cao, Xiwang [1 ]
Chou, Wun-Seng [2 ,3 ]
Gu, Jingjing [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Natl Chenchi Univ, Dept Math Sci, Taipei 11605, Taiwan
基金
中国国家自然科学基金;
关键词
Covering radius; Cyclic code; Diagonal equation; Finite field; Gauss sum; Waring's problem; COVERING RADIUS; CYCLIC CODES;
D O I
10.1016/j.ffa.2016.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use character sums over finite fields to give formulas for the number of solutions of certain diagonal equations of the form a(1)x(1)(m1) + a(2)x(2)(m2) + ... + a(n)x(n)(mn) = c. We also show that if the value distribution of character sums Sigma(x is an element of Fq) chi (ax(m) + bx), a, b is an element of F-q, is known, then one can obtain the number of solutions of the system of equations {x(1) + x(2) + ... + x(n) = alpha x(1)(m) + x(2)(m) +... + x(n)(m) = beta, for some particular m. We finally apply our results to induce some facts about Waring's problems and the covering radius of certain cyclic codes. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:225 / 252
页数:28
相关论文
共 26 条
[1]  
[Anonymous], 1997, COVERING CODES
[2]   ON THE NUMBER OF SOLUTIONS TO CERTAIN DIAGONAL EQUATIONS OVER FINITE FIELDS [J].
Baoulina, Ioulia .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (01) :1-14
[3]  
Berndt B., 1998, Gauss and Jacobi Sums
[4]   Factorization formulae on counting zeros of diagonal equations over finite fields [J].
Cao, Wei ;
Sun, Qi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (05) :1283-1291
[5]  
Carlitz L., 1956, PUBL MATH DEBRECEN, V4, P379
[6]   On systems of linear and diagonal equation of degree Pi+1 over finite fields of characteristic p [J].
Castro, Francis N. ;
Rubio, Ivelisse ;
Guan, Puhua ;
Figueroa, Raul .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :648-657
[7]  
Coulter RS, 1998, ACTA ARITH, V86, P217
[8]  
Coulter RS, 2002, FINITE FIELDS TH APP, V8, P397, DOI [10.1006/ffta2001.0348, 10.1006/ffta.2001.0348]
[9]   ON THE NUMBER OF SOLUTIONS OF SOME GENERAL TYPES OF EQUATIONS IN A FINITE FIELD [J].
FAIRCLOTH, OB .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1952, 4 (03) :343-351
[10]   ON THE COVERING RADIUS OF CYCLIC LINEAR CODES AND ARITHMETIC CODES [J].
HELLESETH, T .
DISCRETE APPLIED MATHEMATICS, 1985, 11 (02) :157-173