Probabilistic Multihypothesis Tracker With an Evolving Poisson Prior

被引:15
作者
Davey, Sam [1 ,2 ]
机构
[1] Def Sci & Technol Org, Natl Secur Intelligence Surveillance & Reconnaiss, Edinburgh, SA 5111, Australia
[2] Univ Adelaide, Adelaide, SA, Australia
关键词
D O I
10.1109/TAES.2014.120633
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The probabilistic multihypothesis tracker (PMHT) is an efficient multitarget tracking algorithm that performs data association under a conditional independence assumption. A key part of the measurement model is the data-association prior, which can be used as a track quality measure for track management decisions. The original PMHT makes this prior an unknown fixed parameter. The PMHT with hysteresis extended the measurement model by adding a Markov chain hyperparameter to the prior, but this came at the cost of exponential complexity in the number of targets. This complexity comes as a consequence of the normalization of the prior. This article shows that the PMHT data-association model is equivalent to assuming that targets create a Poisson-distributed number of measurements; an alternative PMHT is derived that deals directly with the Poisson model parameters and retains linear complexity in the number of targets.
引用
收藏
页码:747 / 759
页数:13
相关论文
共 50 条
[31]   Natural conjugate prior distributions for nonhomogeneous Poisson processes [J].
Huang, YS ;
Bier, VM .
AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON BAYESIAN STATISTICAL SCIENCE, 1996, :292-297
[32]   Bayesian Direction of Arrival Estimation with Prior Knowledge from Target Tracker [J].
Jia, Tianyi ;
Liu, Hongwei ;
Wang, Penghui ;
Gao, Chang .
REMOTE SENSING, 2023, 15 (13)
[33]   Improved Prior Construction for Probabilistic Seismic Prediction [J].
Wang, Pu ;
Cui, Yi-An ;
Du, Xingzhong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[34]   CONTRIBUTION OF PRIOR KNOWLEDGE TO PROBABILISTIC PREDICTION OF FAMINE [J].
Okori, Washington ;
Obua, Joseph .
APPLIED ARTIFICIAL INTELLIGENCE, 2013, 27 (10) :913-923
[35]   Slip-back Mapping as a Tracker of Topological Changes in Evolving Magnetic Configurations [J].
Lionello, R. ;
Titov, V. S. ;
Mikic, Z. ;
Linker, J. A. .
ASTROPHYSICAL JOURNAL, 2020, 891 (01)
[36]   Financial economics without probabilistic prior assumptions [J].
Riedel, Frank .
DECISIONS IN ECONOMICS AND FINANCE, 2015, 38 (01) :75-91
[37]   Probabilistic atlas prior for CT image reconstruction [J].
Rashed, Essam A. ;
Kudo, Hiroyuki .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 :119-136
[38]   Mobile Agent Rendezvous on a Probabilistic Edge Evolving Ring [J].
Yamauchi, Yukiko ;
Izumi, Tomoko ;
Kamei, Sayaka .
2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, :103-112
[39]   Probabilistic clustering of time-evolving distance data [J].
Julia E. Vogt ;
Marius Kloft ;
Stefan Stark ;
Sudhir S. Raman ;
Sandhya Prabhakaran ;
Volker Roth ;
Gunnar Rätsch .
Machine Learning, 2015, 100 :635-654
[40]   To Bias or Not to Bias: Probabilistic Initialisation for Evolving Dispatching Rules [J].
Durasevic, Marko ;
Gil-Gala, Francisco Javier ;
Jakobovic, Domagoj .
GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 :308-323