Multiple nontrivial solutions for nonlinear periodic problems with the p-Laplacian

被引:28
作者
Aizicovici, Sergiu
Papageorgiou, Nikolaos S. [2 ,3 ]
Staicu, Vasile [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[3] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
degree theory; scalar p-Laplacian; periodic solutions; local minimizers; solutions of constant sign;
D O I
10.1016/j.jde.2007.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear periodic problem driven by the scalar p-Laplacian with a nonsmooth potential (hemivariational inequality). Using the degree theory for multivalued perturbations of (S)+-operators and the spectrum of a class of weighted eigenvalue problems for the scalar p-Laplacian, we prove the existence of at least three distinct nontrivial solutions, two of which have constant sign. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:504 / 535
页数:32
相关论文
共 18 条
[1]   Periodic solutions for second order differential inclusions with the scalar p-Laplacian [J].
Aizicovici, Sergiu ;
Papageorgiou, Nikolaos S. ;
Staicu, Vasile .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :913-929
[2]   FIXED-POINT THEORY AND NON-LINEAR PROBLEMS [J].
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (01) :1-39
[3]  
Cellina A, 1969, ANN MAT PUR APPL, V82, P17, DOI DOI 10.1007/BF02410784
[4]   Existence and uniqueness results for some nonlinear boundary value problems [J].
Dang, H ;
Oppenheimer, SF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) :35-48
[5]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13
[6]   EXISTENCE AND MULTIPLICITY OF SOLUTIONS WITH PRESCRIBED PERIOD FOR A 2ND-ORDER QUASI-LINEAR ODE [J].
DELPINO, MA ;
MANASEVICH, RF ;
MURUA, AE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (01) :79-92
[7]   ON THE GLOBAL BIFURCATION FOR A CLASS OF DEGENERATE EQUATIONS [J].
DRABEK, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 159 :1-16
[8]  
FABRY C, 1992, REND ISTIT MAT U TRI, V24, P207
[9]   On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential [J].
Gasinski, L ;
Papageorgiou, NS .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :229-249
[10]   GENERALIZATIONS OF BROWDER DEGREE THEORY [J].
HU, SC ;
PAPAGEORGIOU, NS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (01) :233-259