Memory Efficient Class-Incremental Learning for Image Classification

被引:47
|
作者
Zhao, Hanbin [1 ]
Wang, Hui [1 ]
Fu, Yongjian [1 ]
Wu, Fei [1 ]
Li, Xi [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Shanghai Inst Adv Study, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Knowledge transfer; Data mining; Adaptation models; Training; Noise measurement; Knowledge engineering; Catastrophic forgetting; class-incremental learning (CIL); classification; exemplar; memory efficient;
D O I
10.1109/TNNLS.2021.3072041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the memory-resource-limited constraints, class-incremental learning (CIL) usually suffers from the ``catastrophic forgetting'' problem when updating the joint classification model on the arrival of newly added classes. To cope with the forgetting problem, many CIL methods transfer the knowledge of old classes by preserving some exemplar samples into the size-constrained memory buffer. To utilize the memory buffer more efficiently, we propose to keep more auxiliary low-fidelity exemplar samples, rather than the original real-high-fidelity exemplar samples. Such a memory-efficient exemplar preserving scheme makes the old-class knowledge transfer more effective. However, the low-fidelity exemplar samples are often distributed in a different domain away from that of the original exemplar samples, that is, a domain shift. To alleviate this problem, we propose a duplet learning scheme that seeks to construct domain-compatible feature extractors and classifiers, which greatly narrows down the above domain gap. As a result, these low-fidelity auxiliary exemplar samples have the ability to moderately replace the original exemplar samples with a lower memory cost. In addition, we present a robust classifier adaptation scheme, which further refines the biased classifier (learned with the samples containing distillation label knowledge about old classes) with the help of the samples of pure true class labels. Experimental results demonstrate the effectiveness of this work against the state-of-the-art approaches. We will release the code, baselines, and training statistics for all models to facilitate future research.
引用
收藏
页码:5966 / 5977
页数:12
相关论文
共 50 条
  • [1] Class-Incremental Learning: Survey and Performance Evaluation on Image Classification
    Masana, Marc
    Liu, Xialei
    Twardowski, Bartlomiej
    Menta, Mikel
    Bagdanov, Andrew D.
    van de Weijer, Joost
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5513 - 5533
  • [2] Hyperspectral Image Classification Based on Class-Incremental Learning with Knowledge Distillation
    Xu, Meng
    Zhao, Yuanyuan
    Liang, Yajun
    Ma, Xiaorui
    REMOTE SENSING, 2022, 14 (11)
  • [3] Deep Class-Incremental Learning From Decentralized Data
    Zhang, Xiaohan
    Dong, Songlin
    Chen, Jinjie
    Tian, Qi
    Gong, Yihong
    Hong, Xiaopeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 7190 - 7203
  • [4] Class Bias Correction Matters: A Class-Incremental Learning Framework for Remote Sensing Scene Classification
    Wei, Yunze
    Pan, Zongxu
    Wu, Yirong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [5] Model Behavior Preserving for Class-Incremental Learning
    Liu, Yu
    Hong, Xiaopeng
    Tao, Xiaoyu
    Dong, Songlin
    Shi, Jingang
    Gong, Yihong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7529 - 7540
  • [6] Class-Incremental Novel Category Discovery in Remote Sensing Image Scene Classification via Contrastive Learning
    Zhou, Yifan
    Zhu, Haoran
    Xu, Chang
    Zhang, Ruixiang
    Hua, Guang
    Yang, Wen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9214 - 9225
  • [7] Mine-Distill-Prototypes for Complete Few-Shot Class-Incremental Learning in Image Classification
    Tai, Yuan
    Tan, Yihua
    Xiong, Shengzhou
    Tian, Jinwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Enhancing Class-Incremental Learning for Image Classification via Bidirectional Transport and Selective Momentum
    Fu, Feifei
    Gao, Yizhao
    Lu, Zhiwu
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 175 - 183
  • [9] Memorizing Complementation Network for Few-Shot Class-Incremental Learning
    Ji, Zhong
    Hou, Zhishen
    Liu, Xiyao
    Pang, Yanwei
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 937 - 948
  • [10] Class-Incremental Learning: A Survey
    Zhou, Da-Wei
    Wang, Qi-Wei
    Qi, Zhi-Hong
    Ye, Han-Jia
    Zhan, De-Chuan
    Liu, Ziwei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9851 - 9873