Convergence of branching processes to the local time of a Bessel process

被引:0
作者
Gittenberger, B [1 ]
机构
[1] Vienna Tech Univ, Dept Discrete Math, A-1040 Vienna, Austria
关键词
D O I
10.1002/(SICI)1098-2418(199810/12)13:3/4<423::AID-RSA12>3.3.CO;2-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study Galton-Watson branching processes conditioned on the total progeny to be n which are scaled by a sequence c(n) tending to infinity as o(root n). It is shown that this process weakly converges to the total local time of a two-sided three-dimensional Bessel process. This is done by means of characteristic functions and a generating function approach. (C) 1998 John Wiley & Sons, Inc.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 20 条
[1]  
BILLINGSLEY P, 1968, CONVERGNCE PROBABILI
[2]   CORRELATIONS ON THE STRATA OF A RANDOM MAPPING [J].
DRMOTA, M .
RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (2-3) :357-365
[3]  
Drmota M, 1997, RANDOM STRUCT ALGOR, V10, P421, DOI 10.1002/(SICI)1098-2418(199707)10:4<421::AID-RSA2>3.0.CO
[4]  
2-W
[5]   MARKING IN COMBINATORIAL CONSTRUCTIONS - GENERATING-FUNCTIONS AND LIMITING DISTRIBUTIONS [J].
DRMOTA, M ;
SORIA, M .
THEORETICAL COMPUTER SCIENCE, 1995, 144 (1-2) :67-99
[6]  
DRMOTA M, IN PRESS STOCHASTIC
[7]  
EVGRAFOV EA, 1966, ANAL FUNCTIONS
[8]   SINGULARITY ANALYSIS OF GENERATING-FUNCTIONS [J].
FLAJOLET, P ;
ODLYZKO, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) :216-240
[9]   EXCURSIONS OF BROWNIAN-MOTION AND BESSEL PROCESSES [J].
GETOOR, RK ;
SHARPE, MJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (01) :83-106
[10]  
GITTENBERGER B, IN PRESS SIAM J DISC