Transition metal dichalcogenides (TMDCs) are ideal candidates to explore the manifestation of spin-valley physics under external stimuli. In this study, we investigate the influence of strain on the spin and orbital angular momenta, effective g-factors, and Berry curvatures of several monolayer TMDCs (Mo and W based) using a full ab initio approach. At the K-valleys, we find a surprising decrease of the conduction band spin expectation value for compressive strain, consequently increasing the dipole strength of the dark exciton by more than one order of magnitude (for similar to 1%-2% = 80 olivines, ranging from low-K island-arc basalts with La/Yb similar to 1.5 and 1.5-3.0 wt% H2O to andesites with La/Yb similar to 6-10 and 3.0-3.5 wt% H2O. They are consistent with melting at 1.3 to 2.3 GPa and 1350-1440 degrees C of variably depleted peridotitic mantle fluxed by slab-derived melts and fluids. The chemical signatures of sediment melts dominate, while those of fluids derived from the ocean crust are low compared to global datasets. This is consistent with thick sediment accumulations observed in the Hellenic trench, and with low calculated fluid fluxes from the downgoing slab. The low H2O contents estimated for the primary melts (0.8-1.8 wt%) may imply a component of decompression melting beneath the arc. Coupled with a well-constrained chronostratigraphic context, the melt inclusion archive provides a time series of mantle-derived input into the silicic crustal magmatic system over the last 530 ka. Primitive melts with La/Yb <= 5 have been erupted encased in olivines over the last 530 ky, without any evident time variation. Melt inclusions with La/Yb > 5 have, on the other hand, been restricted to two periods: (1) prior to the onset of major explosive volcanism at similar to 360 ka, and (2) the products of the 3.6 ka Late-Bronze-Age eruption and the 22-to-3.6 ka inter-Plinian period immediately preceding it. The observations may be explained by time-varying differential extraction of melts from deep storage zones in the mantle or lower crust, related to lithospheric rifting and caldera collapse events. Temporal variations in the supplies of slab-derived melts and fluids may also play a role.