Quasiconformal mappings on the Grushin plane

被引:2
作者
Gartland, Chris [1 ]
Jung, Derek [1 ]
Romney, Matthew [1 ]
机构
[1] Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
关键词
Grushin plane; Quasiconformal mapping; Sub-Riemannian geometry; Conformal modulus; SPACE; METRICS;
D O I
10.1007/s00209-017-1851-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a self-homeomorphism of the Grushin plane is quasisymmetric if and only if it is metrically quasiconformal and if and only if it is geometrically quasiconformal. As the main step in our argument, we show that a quasisymmetric parametrization of the Grushin plane by the Euclidean plane must also be geometrically quasiconformal. We also discuss some aspects of the Euclidean theory of quasiconformal maps, such as absolute continuity on almost every compact curve, not satisfied in the Grushin case.
引用
收藏
页码:915 / 928
页数:14
相关论文
共 18 条
[1]   AN APPROACH TO STUDYING QUASICONFORMAL MAPPINGS ON GENERALIZED GRUSHIN PLANES [J].
Ackermann, Colleen .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :305-320
[2]  
[Anonymous], 1971, LECT NOTES MATH
[3]  
[Anonymous], 1996, Progress in Mathematics
[4]  
Heinonen J, 2001, J ANAL MATH, V85, P87
[5]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
[6]   FOUNDATIONS FOR THE THEORY OF QUASI-CONFORMAL MAPPINGS ON THE HEISENBERG-GROUP [J].
KORANYI, A ;
REIMANN, HM .
ADVANCES IN MATHEMATICS, 1995, 111 (01) :1-87
[7]  
Lehto O., 1959, ANN ACAD SCI FENN A1, V273, P14
[8]   THE DIFFERENTIAL OF A QUASI-CONFORMAL MAPPING OF A CARNOT-CARATHEODORY SPACE [J].
MARGULIS, GA ;
MOSTOW, GD .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :402-433
[9]  
Meyerson W., 2011, ARXIV11120078
[10]   Isoperimetric inequality in the Gruishin plane [J].
Monti, R ;
Morbidelli, D .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (02) :355-368