Assessment of excavation damaged zone using a micromechanics model

被引:192
作者
Cai, M [1 ]
Kaiser, PK [1 ]
机构
[1] Laurentian Univ, Geomech Res Ctr, MIRARCO, Sudbury, ON P3E 2C6, Canada
关键词
excavation damaged zone; microseismic event; crack density; constitutive model; seismic velocity;
D O I
10.1016/j.tust.2004.12.002
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
It is well known that acoustic emission (AE) and microseismic (MS) events are indicators of rock fracturing or damage as the rock is brought to failure at high stress. By capturing the microseismic events, underground excavation induced rock mass degradation or damage can be located. The use of microseismic method has been shown as a valuable tool in a number of nuclear waste repository research programs to monitor the extent of the excavation damaged zone (EDZ), but most of the works are limited to a qualitative assessment. This paper presents a study on the quantification of the degree of damage, in terms of crack density calculated from the crack length, and the extent, in terms of crack density distribution, from microseismic event monitoring data. The approach builds on the finding that a realistic crack size corresponding to a microseismic event can be established by applying a tensile cracking model instead of the traditional shear model, commonly used in earthquake data analysis. It can be shown that brittle rock failure is the result of tensile crack initiation, propagation, accumulation, and interaction. Tensile stress can be generated in a confined rock with heterogeneous material properties. When a crack is formed by tensile cracking in this fashion, its orientation tends to become parallel to the direction of maximum compressive stress. A method is developed to take microseismic event monitoring data as input to determine the damage state and the extent of the EDZ by crack distribution. Based on the crack orientation and crack density information, the rock is modeled by a micro-mechanics based constitutive model which considers the anisotropic material properties. Numerical examples are presented using field monitoring data front a tunnel in granite to demonstrate how microseismicity can be quantitatively linked to dynamic rock mass properties. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 31 条
[1]   Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory [J].
Bossart, P ;
Meier, PM ;
Moeri, A ;
Trick, T ;
Mayor, JC .
ENGINEERING GEOLOGY, 2002, 66 (1-2) :19-38
[2]   TECTONIC STRESS AND SPECTRA OF SEISMIC SHEAR WAVES FROM EARTHQUAKES [J].
BRUNE, JN .
JOURNAL OF GEOPHYSICAL RESEARCH, 1970, 75 (26) :4997-+
[3]   ELASTIC-MODULI OF A CRACKED SOLID [J].
BUDIANSKY, B ;
OCONNELL, RJ .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1976, 12 (02) :81-97
[4]   A tensile model for the interpretation of microseismic events near underground openings [J].
Cai, M ;
Kaiser, PK ;
Martin, CD .
PURE AND APPLIED GEOPHYSICS, 1998, 153 (01) :67-92
[5]   Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J].
Cai, M ;
Kaiser, PK ;
Tasaka, Y ;
Maejima, T ;
Morioka, H ;
Minami, M .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2004, 41 (05) :833-847
[6]   Quantification of rock mass damage in underground excavations from microseismic event monitoring [J].
Cai, M ;
Kaiser, PK ;
Martin, CD .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2001, 38 (08) :1135-1145
[7]   A CONSTITUTIVE MODEL OF HIGHLY JOINTED ROCK MASSES [J].
CAI, M ;
HORII, H .
MECHANICS OF MATERIALS, 1992, 13 (03) :217-246
[8]  
Castro LAM, 1996, ROCK MECHANICS TOOLS AND TECHNIQUES, VOLS 1 AND 2, P1589
[9]   SEISMIC-WAVE PROPAGATION THROUGH A CRACKED SOLID - POLARIZATION AS A POSSIBLE DILATANCY DIAGNOSTIC [J].
CRAMPIN, S .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 53 (03) :467-496
[10]   EFFECTIVE ANISOTROPIC ELASTIC-CONSTANTS FOR WAVE-PROPAGATION THROUGH CRACKED SOLIDS [J].
CRAMPIN, S .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1984, 76 (01) :135-145