Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method

被引:8
|
作者
Nagai, Kazuki [1 ]
Anada, Masato [1 ]
Nakanishi-Ohno, Yoshinori [2 ,3 ,4 ]
Okada, Masato [5 ]
Wakabayashi, Yusuke [6 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Univ Tokyo, Komaba Inst Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
surface diffraction; Bayesian inference; Monte Carlo; oxide films; epitaxial films;
D O I
10.1107/S1600576720001314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exchange Monte Carlo (MC) method is implemented in a surface structure refinement software using Bayesian inference. The MC calculation successfully reproduces crystal truncation rod intensity profiles from perovskite oxide ultrathin films, which involves about 60 structure parameters, starting from a simple model structure in which the ultrathin film and substrate surface have an atomic arrangement identical to the substrate bulk crystal. This shows great tolerance of the initial model in the surface structure search. The MC software is provided on the web. One of the advantages of using the MC method is the precise estimation of uncertainty of the obtained parameters. However, the parameter uncertainty is largely underestimated when one assumes that the diffraction measurements at each scattering vector are independent. The underestimation is caused by the correlation of experimental error. A means of estimation of uncertainty based on the effective number of observations is demonstrated.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [41] Parameter extraction and uncertainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation
    Xu, Liangfei
    Fang, Chuan
    Hu, Junming
    Cheng, Siliang
    Li, Jianqiu
    Ouyang, Minggao
    Lehnert, Werner
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (04) : 2309 - 2326
  • [42] Uncertainty of Phasor Measurement Unit calculated by means of Monte Carlo method
    Sira, Martin
    Maslan, Stanislav
    Skalicka, Tereza
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [43] Monte Carlo based analysis of confocal peak extraction uncertainty
    Liu, Chenguang
    Liu, Yan
    Zheng, Tingting
    Tan, Jiubin
    Liu, Jian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (10)
  • [44] A Monte Carlo study of robust and least squares response surface methods
    Vidmar, TJ
    McKean, JW
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 54 (1-3) : 1 - 18
  • [45] Advanced Monte Carlo Method for model uncertainty propagation in risk assessment
    El Safadi, El Abed
    Adrot, Olivier
    Flaus, Jean-Marie
    IFAC PAPERSONLINE, 2015, 48 (03): : 529 - 534
  • [46] Uncertainty analysis in environmental radioactivity measurements using the Monte Carlo code MCNP5
    Gallardo, S.
    Querol, A.
    Ortiz, J.
    Rodenas, J.
    Verdu, G.
    Villanueva, J. F.
    RADIATION PHYSICS AND CHEMISTRY, 2015, 116 : 214 - 218
  • [47] Statistical Phantoms and Determining the Uncertainty of the Thyroid Mathematical Phantom in Internal Dosimetry Using the Monte Carlo Method
    Ragheb, Vahid
    Sajjadi, Zahra
    Mohammadi, Saeed
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (12) : 1075 - 1081
  • [48] Monte Carlo domain decomposition for robust nuclear reactor analysis
    Horelik, Nicholas
    Siegel, Andrew
    Forget, Benoit
    Smith, Kord
    PARALLEL COMPUTING, 2014, 40 (10) : 646 - 660
  • [49] Statistical Phantoms and Determining the Uncertainty of the Thyroid Mathematical Phantom in Internal Dosimetry Using the Monte Carlo Method
    Vahid Ragheb
    Zahra Sajjadi
    Saeed Mohammadi
    Journal of the Korean Physical Society, 2020, 77 : 1075 - 1081
  • [50] A Monte Carlo Method to Data Stream Analysis
    Kerdprasop, Kittisak
    Kerdprasop, Nittaya
    Sattayatham, Pairote
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 240 - +