Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method

被引:8
|
作者
Nagai, Kazuki [1 ]
Anada, Masato [1 ]
Nakanishi-Ohno, Yoshinori [2 ,3 ,4 ]
Okada, Masato [5 ]
Wakabayashi, Yusuke [6 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Univ Tokyo, Komaba Inst Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
surface diffraction; Bayesian inference; Monte Carlo; oxide films; epitaxial films;
D O I
10.1107/S1600576720001314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exchange Monte Carlo (MC) method is implemented in a surface structure refinement software using Bayesian inference. The MC calculation successfully reproduces crystal truncation rod intensity profiles from perovskite oxide ultrathin films, which involves about 60 structure parameters, starting from a simple model structure in which the ultrathin film and substrate surface have an atomic arrangement identical to the substrate bulk crystal. This shows great tolerance of the initial model in the surface structure search. The MC software is provided on the web. One of the advantages of using the MC method is the precise estimation of uncertainty of the obtained parameters. However, the parameter uncertainty is largely underestimated when one assumes that the diffraction measurements at each scattering vector are independent. The underestimation is caused by the correlation of experimental error. A means of estimation of uncertainty based on the effective number of observations is demonstrated.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [31] Monte Carlo Analysis-Based CapEx Uncertainty Estimation of New Technologies: The Case of Photochemical Lamps
    Simon, Levente L.
    Dieckmann, Michael
    Robinson, Alan
    Vent-Schmidt, Thomas
    Marantelli, Dominique
    Kohlbrenner, Ralf
    Saint-Dizier, Alexandre
    Gribkov, Denis
    Krieger, Jean-Philippe
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2021, 25 (10) : 2221 - 2229
  • [32] Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis
    Ahammed, M
    Melchers, RE
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (05) : 594 - 601
  • [33] Estimating the uncertainty of discharge coefficient predicted for oblique side weir using Monte Carlo method
    Mohammed, Ahmed Y.
    Golijanek-Jedrzejczyk, Anna
    FLOW MEASUREMENT AND INSTRUMENTATION, 2020, 73
  • [34] Uncertainty quantification for chromatography model parameters by Bayesian inference using sequential Monte Carlo method
    Yamamoto, Yota
    Yajima, Tomoyuki
    Kawajiri, Yoshiaki
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 175 : 223 - 237
  • [35] UNCERTAINTY QUANTIFICATION OF THE GEM CHALLENGE MAGNETIC RECONNECTION PROBLEM USING THE MULTILEVEL MONTE CARLO METHOD
    Sousa, Eder M.
    Lin, Guang
    Shumlak, Uri
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2015, 5 (04) : 327 - 339
  • [36] A Multi-GPU Approach For The Exchange Monte Carlo Method
    Navarro, Cristobal A.
    Wei, Huang
    Deng, Youjin
    2015 34TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2015,
  • [37] Fatigue life estimation of aero engine mount structure using Monte Carlo simulation
    Narayanan, Govindarajan
    Rezaei, Khosrow
    Nackenhorst, Udo
    INTERNATIONAL JOURNAL OF FATIGUE, 2016, 83 : 53 - 58
  • [38] Sensitivity and Uncertainty Analysis of a SCWR from Monte Carlo Simulations
    Espinosa-Martinez, E. -G.
    Martin-del-Campo, C.
    Francois, J. L.
    Quezada-Garcia, S.
    Vazquez-Rodriguez, A.
    Espinosa-Paredes, G.
    PROCEEDINGS OF THE 20TH PACIFIC BASIN NUCLEAR CONFERENCE, VOL 1, 2017, : 239 - 252
  • [39] Monte Carlo criticality analysis under material distribution uncertainty
    Ueki, Taro
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2017, 54 (03) : 267 - 279
  • [40] Monte Carlo Modeling Method for Surface Light Source
    Tang Haisong
    Mao Xianglong
    Feng Zexin
    Li Haoran
    ACTA OPTICA SINICA, 2023, 43 (21)