Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method

被引:8
|
作者
Nagai, Kazuki [1 ]
Anada, Masato [1 ]
Nakanishi-Ohno, Yoshinori [2 ,3 ,4 ]
Okada, Masato [5 ]
Wakabayashi, Yusuke [6 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Univ Tokyo, Komaba Inst Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
surface diffraction; Bayesian inference; Monte Carlo; oxide films; epitaxial films;
D O I
10.1107/S1600576720001314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exchange Monte Carlo (MC) method is implemented in a surface structure refinement software using Bayesian inference. The MC calculation successfully reproduces crystal truncation rod intensity profiles from perovskite oxide ultrathin films, which involves about 60 structure parameters, starting from a simple model structure in which the ultrathin film and substrate surface have an atomic arrangement identical to the substrate bulk crystal. This shows great tolerance of the initial model in the surface structure search. The MC software is provided on the web. One of the advantages of using the MC method is the precise estimation of uncertainty of the obtained parameters. However, the parameter uncertainty is largely underestimated when one assumes that the diffraction measurements at each scattering vector are independent. The underestimation is caused by the correlation of experimental error. A means of estimation of uncertainty based on the effective number of observations is demonstrated.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [21] Rolling process variation estimation using a Monte-Carlo method
    Weiner, Max
    Renzing, Christoph
    Schmidtchen, Matthias
    Prahl, Ulrich
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 908 - 913
  • [22] Subcutaneous Veins Depth Estimation Method Using Monte Carlo Simulations
    Shahzad, A.
    Tyng, Chai Meei
    Saad, N. M.
    Walter, N.
    Malik, Aamir Saeed
    Meriaudeau, F.
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 376 - 380
  • [23] Monte Carlo method to machine tool uncertainty evaluation
    Aguado, S.
    Perez, P.
    Albajez, J. A.
    Velazquez, J.
    Santolaria, J.
    MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE 2017 (MESIC 2017), 2017, 13 : 585 - 592
  • [24] Uncertainty of ROCOF calculated by means of Monte Carlo method
    Sira, Martin
    Maslan, Stanislav
    Skalicka, Tereza
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [25] How to account for uncertainty due to measurement errors in an uncertainty analysis using Monte Carlo simulation
    Hofer, Eduard
    HEALTH PHYSICS, 2008, 95 (03): : 277 - 290
  • [26] USING MONTE CARLO METHOD AND ADAPTIVE SAMPLING TO ESTIMATE THE LIMIT SURFACE
    Zhang, Lixuan
    Zhang, Zhijian
    Wang, He
    Zhang, Yuhang
    Sun, Dabin
    PROCEEDINGS OF 2021 28TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE28), VOL 4, 2021,
  • [27] A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty
    McFarland, John
    DeCarlo, Erin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 197
  • [28] Critical reliability slip surface in soil slope stability analysis using Monte Carlo simulation method
    Alangi, Seyyed Hossein Seyyed
    Nozhati, Saeed
    Vazirizade, Seyyed Mohsen
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2018, 9 (02) : 233 - 240
  • [29] Monte carlo uncertainty analysis for photothermal radiometry measurements using a curve fit process
    Horne, Kyle
    Fleming, Austin
    Timmins, Ben
    Ban, Heng
    METROLOGIA, 2015, 52 (06) : 783 - 792
  • [30] COVARIANCE ESTIMATION USING h-STATISTICS IN MONTE CARLO AND MULTILEVEL MONTE CARLO METHODS
    Shivanand, Sharana Kumar
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2025, 15 (02) : 43 - 64