Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method

被引:8
|
作者
Nagai, Kazuki [1 ]
Anada, Masato [1 ]
Nakanishi-Ohno, Yoshinori [2 ,3 ,4 ]
Okada, Masato [5 ]
Wakabayashi, Yusuke [6 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Univ Tokyo, Komaba Inst Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
surface diffraction; Bayesian inference; Monte Carlo; oxide films; epitaxial films;
D O I
10.1107/S1600576720001314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exchange Monte Carlo (MC) method is implemented in a surface structure refinement software using Bayesian inference. The MC calculation successfully reproduces crystal truncation rod intensity profiles from perovskite oxide ultrathin films, which involves about 60 structure parameters, starting from a simple model structure in which the ultrathin film and substrate surface have an atomic arrangement identical to the substrate bulk crystal. This shows great tolerance of the initial model in the surface structure search. The MC software is provided on the web. One of the advantages of using the MC method is the precise estimation of uncertainty of the obtained parameters. However, the parameter uncertainty is largely underestimated when one assumes that the diffraction measurements at each scattering vector are independent. The underestimation is caused by the correlation of experimental error. A means of estimation of uncertainty based on the effective number of observations is demonstrated.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [1] Uncertainty estimation and Monte Carlo simulation method
    Papadopoulos, CE
    Yeung, H
    FLOW MEASUREMENT AND INSTRUMENTATION, 2001, 12 (04) : 291 - 298
  • [2] Uncertainty Analysis of ANN Based Spectral Analysis Using Monte Carlo Method
    Ramon Salinas, Jose
    Garcia-Lagos, Francisco
    Diaz de Aguilar, Javier
    Joya, Gonzalo
    Sandoval, Francisco
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 269 - 280
  • [3] Uncertainty Analysis for Fluorescence Tomography with Monte Carlo Method
    Reinbacher-Koestinger, Alice
    Freiberger, Manuel
    Scharfetter, Hermann
    DIFFUSE OPTICAL IMAGING III, 2011, 8088
  • [4] Radiation symmetry test and uncertainty analysis of Monte Carlo method based on radiative exchange factor
    Shuai, Yong
    Zhang, Hao-Chun
    Tan, He-Ping
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (07) : 1281 - 1296
  • [5] Estimation of Uncertainty in the Calibration of Industrial Platinum Resistance Thermometers (IPRT) Using Monte Carlo Method
    Tistomo, A. S.
    Larassati, D.
    Achmadi, A.
    Purwowibowo
    Zaid, G.
    MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA, 2017, 32 (04): : 273 - 278
  • [6] Estimation of Uncertainty in the Calibration of Industrial Platinum Resistance Thermometers (IPRT) Using Monte Carlo Method
    Arfan Sindhu Tistomo
    Dwi Larassati
    Aditya Achmadi
    Ghufron Purwowibowo
    MAPAN, 2017, 32 : 273 - 278
  • [7] Variance Estimation in Monte Carlo Eigenvalue Simulations Using Spectral Analysis Method
    Jin, Lei
    Banerjee, Kaushik
    NUCLEAR SCIENCE AND ENGINEERING, 2018, 191 (03) : 248 - 261
  • [8] Application of the Monte Carlo Method for the Estimation of Uncertainty in Radiofrequency Field Spot Measurements
    Iakovidis, S.
    Apostolidis, C.
    Samaras, T.
    MEASUREMENT SCIENCE REVIEW, 2015, 15 (02): : 72 - 76
  • [9] A proposal on accuracy estimation method for the sampling-based uncertainty analysis with Monte Carlo simulation technique
    Kim, Song Hyun
    Song, Myung Sub
    Sun, Gwang Min
    Shin, Chang Ho
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2016, 53 (02) : 295 - 301
  • [10] Monte Carlo uncertainty analysis of an ANN-based spectral analysis method
    Salinas, Jose Ramon
    Garcia-Lagos, Francisco
    Diaz de Aguilar, Javier
    Joya, Gonzalo
    Sandoval, Francisco
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (02) : 351 - 368