GLOBAL ENTROPY SOLUTIONS TO AN INHOMOGENEOUS ISENTROPIC COMPRESSIBLE EULER SYSTEM

被引:9
作者
Cao, Wentao [1 ]
Huang, Feimin [1 ]
Li, Tianhong [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Isentropic; compressible Euler equations; compensated compactness; uniform estimate; maximum principle; LAX-FRIEDRICHS SCHEME; GAS-DYNAMICS; HYDRODYNAMIC MODEL; WEAK SOLUTIONS; CONVERGENCE; EXISTENCE; SEMICONDUCTORS; EQUATIONS; STABILITY;
D O I
10.1016/S0252-9602(16)30063-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we develop a new technique to prove the global existene of entropy solutions to an inhomogeneous isentropic compressible Euler equations through the compensated compactness and vanishing viscosity method. In particular, the entropy solutions are uniformly bounded independent of time.
引用
收藏
页码:1215 / 1224
页数:10
相关论文
共 18 条
[1]   Global solutions to the compressible Euler equations with geometrical structure [J].
Chen, GQ ;
Glimm, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (01) :153-193
[2]   CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME FOR ISENTROPIC GAS-DYNAMICS .3. [J].
CHEN, GQ .
ACTA MATHEMATICA SCIENTIA, 1986, 6 (01) :75-120
[3]   CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME FOR ISENTROPIC GAS-DYNAMICS .2. [J].
DING, XX ;
CHEN, GQ ;
LUO, PZ .
ACTA MATHEMATICA SCIENTIA, 1985, 5 (04) :433-472
[4]  
DING XX, 1985, ACTA MATH SCI, V5, P415, DOI 10.1016/S0252-9602(18)30542-3
[5]  
DING XX, 1989, COMMUN MATH PHYS, V121, P63, DOI 10.1007/BF01218624
[6]   CONVERGENCE OF THE VISCOSITY METHOD FOR ISENTROPIC GASDYNAMICS [J].
DIPERNA, RJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :1-30
[7]   A gas-solid free boundary problem for a compressible viscous gas [J].
Huang, FM ;
Matsumura, A ;
Shi, XD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (06) :1331-1355
[8]   KINETIC FORMULATION OF THE ISENTROPIC GAS-DYNAMICS AND P-SYSTEMS [J].
LIONS, PL ;
PERTHAME, B ;
TADMOR, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (02) :415-431
[9]  
Lions PL, 1996, COMMUN PUR APPL MATH, V49, P599, DOI 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO
[10]  
2-5