Bloch-sphere colorings and Bell inequalities

被引:5
作者
Kent, Adrian [1 ,2 ]
Pitalua-Garcia, Damian [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Ctr Quantum Informat & Foundat, DAMTP, Cambridge CB3 0WA, England
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
关键词
VIOLATION; NONLOCALITY; PHOTONS;
D O I
10.1103/PhysRevA.90.062124
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the quantum and local hidden variable (LHV) correlations obtained by measuring a pair of qubits by projections defined by randomly chosen axes separated by an angle theta. Local hidden variables predict binary colorings of the Bloch sphere with antipodal points oppositely colored. We prove Bell inequalities separating the LHV predictions from the singlet quantum correlations for theta is an element of (0, pi/3). We raise and explore the hypothesis that, for a continuous range of theta > 0, the maximum LHV anticorrelation is obtained by assigning to each qubit a coloring with one hemisphere black and the other white.
引用
收藏
页数:13
相关论文
共 32 条
  • [1] Grothendieck's constant and local models for noisy entangled quantum states
    Acin, Antonio
    Gisin, Nicolas
    Toner, Benjamin
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [2] Continuous input nonlocal games
    Aharon, Netanel
    Machnes, Shai
    Reznik, Benni
    Silman, Jonathan
    Vaidman, Lev
    [J]. NATURAL COMPUTING, 2013, 12 (01) : 5 - 8
  • [3] [Anonymous], 2011, [No title captured], Patent No. 7983422
  • [4] EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS
    ASPECT, A
    DALIBARD, J
    ROGER, G
    [J]. PHYSICAL REVIEW LETTERS, 1982, 49 (25) : 1804 - 1807
  • [5] Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
  • [6] Bohm D., 1951, QUANTUM THEORY
  • [7] WRINGING OUT BETTER BELL INEQUALITIES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. ANNALS OF PHYSICS, 1990, 202 (01) : 22 - 56
  • [8] Bell nonlocality
    Brunner, Nicolas
    Cavalcanti, Daniel
    Pironio, Stefano
    Scarani, Valerio
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (02) : 419 - 478
  • [9] Measurable sets with excluded distances
    Bukh, Boris
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (03) : 668 - 697
  • [10] QUANTUM GENERALIZATIONS OF BELLS-INEQUALITY
    CIRELSON, BS
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1980, 4 (02) : 93 - 106