Fusion of PCA and Segmented-PCA Domain Multiscale 2-D-SSA for Effective Spectral-Spatial Feature Extraction and Data Classification in Hyperspectral Imagery

被引:58
作者
Fu, Hang [1 ,2 ]
Sun, Genyun [1 ,2 ]
Ren, Jinchang [3 ,4 ]
Zhang, Aizhu [1 ,2 ]
Jia, Xiuping [5 ]
机构
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
[3] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou 510665, Peoples R China
[4] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[5] Univ New South Wales Canberra, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Classification; dimension reduction; feature fusion; hyperspectral imagery (HSI); multiscale 2-D-singular spectrum analysis (2-D-SSA); DIMENSIONALITY REDUCTION; NETWORK;
D O I
10.1109/TGRS.2020.3034656
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
As hyperspectral imagery (HSI) contains rich spectral and spatial information, a novel principal component analysis (PCA) and segmented-PCA (SPCA)-based multiscale 2-D-singular spectrum analysis (2-D-SSA) fusion method is proposed for joint spectral-spatial HSI feature extraction and classification. Considering the overall spectra and adjacent band correlations of objects, the PCA and SPCA methods are utilized first for spectral dimension reduction, respectively. Then, multiscale 2-D-SSA is applied onto the SPCA dimension-reduced images to extract abundant spatial features at different scales, where PCA is applied again for dimensionality reduction. The obtained multiscale spatial features are then fused with the global spectral features derived from PCA to form multiscale spectral-spatial features (MSF-PCs). The performance of the extracted MSF-PCs is evaluated using the support vector machine (SVM) classifier. Experiments on four benchmark HSI data sets have shown that the proposed method outperforms other state-of-the-art feature extraction methods, including several deep learning approaches, when only a small number of training samples are available.
引用
收藏
页数:14
相关论文
共 55 条
[1]   Feature selection and classification of hyperspectral images, with support vector machines [J].
Archibald, Rick ;
Fann, George .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) :674-677
[2]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[3]   Combining Morphological Attribute Profiles via an Ensemble Method for Hyperspectral Image Classification [J].
Bao, Rui ;
Xia, Junshi ;
Dalla Mura, Mauro ;
Du, Peijun ;
Chanussot, Jocelyn ;
Ren, Jinchang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :359-363
[4]   Improved Classification of VHR Images of Urban Areas Using Directional Morphological Profiles [J].
Bellens, Rik ;
Gautama, Sidharta ;
Martinez-Fonte, Leyden ;
Philips, Wilfried ;
Chan, Jonathan Cheung-Wai ;
Canters, Frank .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10) :2803-2813
[5]   Sparse and Low-Rank Matrix Decomposition for Automatic Target Detection in Hyperspectral Imagery [J].
Bitar, Ahmad W. ;
Cheong, Loong-Fah ;
Ovarlez, Jean-Philippe .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08) :5239-5251
[6]  
Chang CC, 2011, ACM T INTEL SYST TEC, V2, P1, DOI DOI 10.1145/1961189.1961199
[7]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[8]   Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification [J].
Chen, Yushi ;
Zhu, Kaiqiang ;
Zhu, Lin ;
He, Xin ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :7048-7066
[9]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[10]  
Danilov D., 1997, The principal components of time series: The "Caterpillar method