Ergodicity for the 3D stochastic Navier-Stokes equations

被引:122
作者
Da Prato, G
Debussche, A
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Ecole Normale Super, F-35170 Bruz, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2003年 / 82卷 / 08期
关键词
stochastic Navier-Stokes equations; transition semigroup; invariant measure; ergodicity;
D O I
10.1016/S0021-7824(03)00025-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Kolmogorov equation associated with the stochastic Navier-Stokes equations in 3D, we prove existence of a solution in the strict or mild sense. The method consists in finding several estimates for the solutions u(m) of the Galerkin approximations of u and their derivatives. These estimates are obtained with the help of an auxiliary Kolmogorov equation with a very irregular negative potential. Although uniqueness is not proved, we are able to construct a transition semigroup for the 3D Navier-Stokes equations. Furthermore, this transition semigroup has a unique invariant measure, which is ergodic and strongly mixing. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:877 / 947
页数:71
相关论文
共 34 条
[1]  
[Anonymous], MATH PROBLEMS STAT H
[2]  
[Anonymous], 2002, LONDON MATH SOC LECT
[3]  
Auscher P., 1999, Espaces critiques pour le systeme des equations de NavierStokes incompressibles
[4]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[5]  
Bensoussan A., 1973, J. Funct. Anal, V13, P195, DOI [10.1016/0022-1236(73)90045-1, DOI 10.1016/0022-1236(73)90045-1]
[6]  
Bismut J. M., 1984, Large deviations and the Malliavin calculus, volume 45 of Progress in Mathematics, V45
[7]   Exponential mixing of the 2D stochastic Navier-Stokes dynamics [J].
Bricmont, J ;
Kupiainen, A ;
Lefevere, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) :87-132
[8]  
BRZEZNIAK Z, 1991, MATH MOD METH APPL S, V1, P41, DOI DOI 10.1142/S0218202591000046
[9]  
Cannone M., 1995, ONDELETTES PARAPRODU
[10]   STATISTICAL SOLUTIONS OF STOCHASTIC NAVIER-STOKES EQUATIONS [J].
CAPINSKI, M ;
CUTLAND, NJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) :927-940