Permutation matrices, wreath products, and the distribution of eigenvalues

被引:11
作者
Wieand, K [1 ]
机构
[1] Univ Chicago, Dept Hlth Studies, Chicago, IL 60637 USA
关键词
random matrices; permutations; wreath products;
D O I
10.1023/A:1025616431496
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of random matrix ensembles which can be constructed from the random permutation matrices by replacing the nonzero entries of the n x n permutation matrix matrix with M x M diagonal matrices whose entries are random Kth roots of unity or random points on the unit circle. Let X be the number of eigenvalues lying in a specified arc I of the unit circle, and consider the standardized random variable (X- E[X])/(Var(X))(1/2). We show that for a fixed set of arcs I-1,..., I-N, the corresponding standardized random variables are jointly normal in the large n limit, and compare the covariance structures which arise with results for other random matrix ensembles.
引用
收藏
页码:599 / 623
页数:25
相关论文
共 24 条
[1]  
ABERT M, UNPUB 1 2 TREES SYLO
[2]  
ABERT M, UNPUB DIMENSION RAND
[3]   THE CYCLE STRUCTURE OF RANDOM PERMUTATIONS [J].
ARRATIA, R ;
TAVARE, S .
ANNALS OF PROBABILITY, 1992, 20 (03) :1567-1591
[4]   LIMIT-THEOREMS FOR COMBINATORIAL STRUCTURES VIA DISCRETE PROCESS APPROXIMATIONS [J].
ARRATIA, R ;
TAVARE, S .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :321-345
[5]  
Arratia R., 1992, Ann. Appl. Probab., V2, P519, DOI [10.1214/aoap/1177005647, DOI 10.1214/AOAP/1177005647]
[6]  
Artin M., 1991, Algebra
[7]   GAUSSIAN FLUCTUATION IN RANDOM MATRICES [J].
COSTIN, O ;
LEBOWITZ, JL .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :69-72
[8]   ON THE EIGENVALUES OF RANDOM MATRICES [J].
DIACONIS, P ;
SHAHSHAHANI, M .
JOURNAL OF APPLIED PROBABILITY, 1994, 31A :49-62
[9]  
DIACONIS P, 2000, 200024 STANF U
[10]  
Durrett R., 1991, PROBABILITY THEORY E