Robust visual object tracking using context-based spatial variation via multi-feature fusion

被引:34
作者
Elayaperumal, Dinesh [1 ]
Joo, Young Hoon [1 ]
机构
[1] Kunsan Natl Univ, Sch IT Informat & Control Engn, 588 Daehak Ro, Gunsan Si 54150, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Correlation filter; Context; Spatial variation; Feature fusion; ADMM; Object tracking; CORRELATION FILTERS;
D O I
10.1016/j.ins.2021.06.084
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the emergence of camera technology, visual tracking has witnessed great attention in the field of computer vision. For instance, numerous discriminative correlation filter (DCF) methods are broadly used in tracking, nevertheless, most of them fail to efficiently find the target in challenging situations which leads to tracking failure throughout the sequences. In order to handle these issues, we propose contextual information based spatial variation with a multi-feature fusion method (CSVMF) for robust object tracking. This work incorporates the contextual information of the target to determine the location of the target accurately, which utilizes the relationship between the target and its surroundings to increase the efficiency of the tracker. In addition, we integrate the spatial variation information which measures the second-order difference of the filter to avoid the over-fitting problem caused by the changes in filter coefficient. Furthermore, we adopt multi-feature fusion strategy to enhance the target appearance by using different metrics. The tracking results from different features are fused by employing peak-to-sidelobe ratio (PSR) which measures the peak strength of the response. Finally, we conduct extensive experiments on TC128, DTB70, UAV123@10fps, and UAV123 datasets to demonstrate that the proposed method achieves a favorable performance over the existing ones. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:467 / 482
页数:16
相关论文
共 50 条
[1]   Ensemble tracking [J].
Avidan, Shai .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (02) :261-271
[2]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[3]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[4]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[5]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[6]   Kernel-based object tracking [J].
Comaniciu, D ;
Ramesh, V ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) :564-577
[7]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[8]  
Danelljan M., 2014, P 2014 BRIT MACH VIS, P1
[9]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575
[10]   Learning Spatially Regularized Correlation Filters for Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4310-4318