Pseudorandom Generators for Regular Branching Programs

被引:19
作者
Braverman, Mark [1 ]
Rao, Anup [2 ]
Raz, Ran [3 ]
Yehudayoff, Amir [4 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Univ Washington, Seattle, WA USA
[3] Weizmann Inst Sci, Rehovot, Israel
[4] Techn, Haifa, Israel
来源
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE | 2010年
基金
美国国家科学基金会;
关键词
Pseudorandomness; branching programs; explicit constructions; CONSTRUCTIONS;
D O I
10.1109/FOCS.2010.11
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give new pseudorandom generators for regular read-once branching programs of small width. A branching program is regular if the in-degree of every vertex in it is either 0 or 2. For every width d and length n, our pseudorandom generator uses a seed of length O((log d + log log n + log(1/epsilon)) log n) to produce n bits that cannot be distinguished from a uniformly random string by any regular width d length n read-once branching program, except with probability epsilon. We also give a result for general read-once branching programs, in the case that there are no vertices that are reached with small probability. We show that if a (possibly non-regular) branching program of length n and width d has the property that every vertex in the program is traversed with probability at least gamma on a uniformly random input, then the error of the generator above is at most 2 epsilon/gamma(2).
引用
收藏
页码:40 / 47
页数:8
相关论文
共 16 条
[1]  
Ajtai M., 1987, P 19 ANN ACM S THEOR, P132, DOI DOI 10.1145/2839
[2]   SIMPLE CONSTRUCTIONS OF ALMOST K-WISE INDEPENDENT RANDOM-VARIABLES [J].
ALON, N ;
GOLDREICH, O ;
HASTAD, J ;
PERALTA, R .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :289-304
[3]  
Babai L., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P1, DOI 10.1145/73007.73008
[5]  
Goldreich O, 1997, RANDOM STRUCT ALGOR, V11, P315, DOI 10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO
[6]  
2-1
[7]  
Impagliazzo R., 1994, Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, P356, DOI 10.1145/195058.195190
[8]   SMALL-BIAS PROBABILITY SPACES - EFFICIENT CONSTRUCTIONS AND APPLICATIONS [J].
NAOR, J ;
NAOR, M .
SIAM JOURNAL ON COMPUTING, 1993, 22 (04) :838-856
[9]   PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION [J].
NISAN, N .
COMBINATORICA, 1992, 12 (04) :449-461
[10]   Randomness is linear in space [J].
Nisan, N ;
Zuckerman, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1996, 52 (01) :43-52