Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter

被引:2
|
作者
Capinski, Michal [1 ]
Polanski, Andrzej [1 ]
机构
[1] Silesian Tech Univ, Inst Informat, Gliwice, Poland
来源
MAN-MACHINE INTERACTIONS 4, ICMMI 2015 | 2016年 / 391卷
关键词
Parameter estimation; Systems biology; Extended kalman filter; Dynamic; Optimization; Spline approximation; STATE-SPACE MODELS; BIOCHEMICAL PATHWAYS; OPTIMIZATION;
D O I
10.1007/978-3-319-23437-3_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Models in systems biology, which reflect complex dynamic biological phenomena aremost often described as ordinary differential equations (ODE). Characteristic properties of these differential equations is nonlinearity and large size (number of state variables). These models also contain large numbers of unknown parameters. So the main challenge in developing models in systems biology is estimation of numerous unknown parameters in nonlinear differential equations. There are already numerous approaches to parameter estimation in systems biology models. However, main difficulties speed of convergence and multiple minima (multiple solutions) are still obstacles in achieving solutions of sufficient efficiency. In this chapter we propose a new approach based on combination of extended Kalman filtering dynamical optimization with spline approximation of solutions to ODE, for parameter estimation in systems biology models. We present the main idea and we show comparisons to some published results.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [21] State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    Wang, Dingbao
    Chen, Yuguo
    Cai, Ximing
    WATER RESOURCES RESEARCH, 2009, 45
  • [22] Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method
    Ebrahimian, Hamed
    Astroza, Rodrigo
    Conte, Joel P.
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2015, 44 (10): : 1495 - 1522
  • [23] Parameter Estimation of Biological Phenomena Modeled by S-systems: An Extended Kalman Filter Approach
    Meskin, N.
    Nounou, H.
    Nounou, M.
    Datta, A.
    Dougherty, E. R.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4424 - 4429
  • [24] Parameter estimation in systems biology models using spline approximation
    Zhan, Choujun
    Yeung, Lam F.
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [25] On the state estimation of chaotic systems by a particle filter and an extended Kalman filter
    Mejri, Sameh
    Tlili, Ali Sghaier
    Braiek, Naceur Benhadj
    2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
  • [26] ONLINE PARAMETER AND STATE ESTIMATION OF CONTINUOUS CULTIVATION BY EXTENDED KALMAN FILTER
    NAHLIK, J
    BURIANEC, Z
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1988, 28 (02) : 128 - 134
  • [27] FDI by extended Kalman filter parameter estimation for an industrial actuator benchmark
    Univ of Cincinnati, Cincinnati, United States
    Control Eng Pract, 12 (1769-1774):
  • [28] An Adaptive Extended Kalman Filter for State and Parameter Estimation in AUV Localization
    Iezzi, Luca
    Petrioli, Chiara
    Basagni, Stefano
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3932 - 3938
  • [29] Simultaneous Parameter and State Estimation with Extended Kalman Filter for Dynamic Parameters
    Tang, Fangzhou
    Wang, Zhaohui
    Cheng, Yayun
    2024 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM, IWS 2024, 2024,
  • [30] Online parameter estimation of cold plate based on extended Kalman filter
    Jiang, Hongsheng
    Dong, Sujun
    Li, Aicheng
    Meng, Fanxin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1850 - 1855