Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter

被引:2
|
作者
Capinski, Michal [1 ]
Polanski, Andrzej [1 ]
机构
[1] Silesian Tech Univ, Inst Informat, Gliwice, Poland
来源
MAN-MACHINE INTERACTIONS 4, ICMMI 2015 | 2016年 / 391卷
关键词
Parameter estimation; Systems biology; Extended kalman filter; Dynamic; Optimization; Spline approximation; STATE-SPACE MODELS; BIOCHEMICAL PATHWAYS; OPTIMIZATION;
D O I
10.1007/978-3-319-23437-3_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Models in systems biology, which reflect complex dynamic biological phenomena aremost often described as ordinary differential equations (ODE). Characteristic properties of these differential equations is nonlinearity and large size (number of state variables). These models also contain large numbers of unknown parameters. So the main challenge in developing models in systems biology is estimation of numerous unknown parameters in nonlinear differential equations. There are already numerous approaches to parameter estimation in systems biology models. However, main difficulties speed of convergence and multiple minima (multiple solutions) are still obstacles in achieving solutions of sufficient efficiency. In this chapter we propose a new approach based on combination of extended Kalman filtering dynamical optimization with spline approximation of solutions to ODE, for parameter estimation in systems biology models. We present the main idea and we show comparisons to some published results.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [11] ADAPTIVE SYNCHRONIZATION AND CHANNEL PARAMETER-ESTIMATION USING AN EXTENDED KALMAN FILTER
    AGHAMOHAMMADI, A
    MEYR, H
    ASCHEID, G
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (11) : 1212 - 1219
  • [12] Parameter estimation of a railway vehicle running bogie using extended Kalman filter
    Zhang Zhongshun
    Xu Bowen
    Ma Lei
    Geng Shaoyang
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 3393 - 3398
  • [13] Parameter Estimation and Convergence Analysis for a Class of Canonical Dynamic Systems by Extended Kalman Filter
    Wei, Ping
    Xia, Bin
    Luo, Xionglin
    CONFERENCE PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON CONTROL SCIENCE AND SYSTEMS ENGINEERING (ICCSSE), 2017, : 336 - 340
  • [14] An Energy Balance Model Parameter Estimation with an Extended Kalman Filter
    Manurung, Auralius
    Kristiana, Lisa
    Aryanta, Dwi
    IFAC PAPERSONLINE, 2021, 54 (20): : 735 - 740
  • [15] Dual extended Kalman filter for vehicle state and parameter estimation
    Wenzel, TA
    Burnham, KJ
    Blundell, MV
    Williams, RA
    VEHICLE SYSTEM DYNAMICS, 2006, 44 (02) : 153 - 171
  • [16] Parameter Estimation Method for Coupled Tank System using Dual Extended Kalman Filter
    Seung, Ji-Hoon
    Lee, Oeok-Jin
    Chong, Kil-To
    2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), 2013, : 1223 - 1228
  • [17] Parameter estimation of a chemical process using finite element method and extended kalman filter
    Jha, A.N.
    Journal of the Institution of Engineers (India), Part CH: Chemical Engineering Division, 1992, 72 (03):
  • [18] Aquifer parameter identification using the extended Kalman filter
    Leng, CH
    Yeh, HD
    WATER RESOURCES RESEARCH, 2003, 39 (03)
  • [19] Online estimation of the state and parameters in compartmental models using extended Kalman filter
    Özbek, L
    Efe, M
    NONLINEAR DYNAMICS IN THE LIFE AND SOCIAL SCIENCES, 2001, 320 : 262 - 271
  • [20] Estimation of plasma properties using an extended Kalman filter with plasma global models
    Greve, C. M.
    Hara, K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (25)