Gradient estimate for Ornstein-Uhlenbeck jump processes

被引:30
作者
Wang, Feng-Yu [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R China
[3] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
关键词
Levy process; Gradient estimate; Subordination; Compound Poisson process;
D O I
10.1016/j.spa.2010.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using absolutely continuous lower bounds of the Levy measure, explicit gradient estimates are derived for the semigroup of the corresponding Levy process with a linear drift. A derivative formula is presented for the conditional distribution of the process at time t under the condition that the process jumps before t. Finally, by using bounded perturbations of the Levy measure, the resulting gradient estimates are extended to linear SDEs driven by Levy-type processes. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:466 / 478
页数:13
相关论文
共 15 条
[11]  
KNOPOVA V, ARXIV09121482V1
[12]   Densities for Ornstein-Uhlenbeck processes with jumps [J].
Priola, Enrico ;
Zabczyk, Jerzy .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :41-50
[13]   Subordination in the sense of bochner and a related functional calculus [J].
Schilling, RL .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1998, 64 :368-396
[14]   Potential Theory of Subordinate Brownian Motion [J].
Song, R. ;
Vondracek, Z. .
POTENTIAL ANALYSIS OF STABLE PROCESSES AND ITS EXTENSIONS, 2009, 1980 :87-176
[15]  
WANG FY, BERNOULLI IN PRESS