Gradient estimate for Ornstein-Uhlenbeck jump processes

被引:30
作者
Wang, Feng-Yu [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R China
[3] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
关键词
Levy process; Gradient estimate; Subordination; Compound Poisson process;
D O I
10.1016/j.spa.2010.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using absolutely continuous lower bounds of the Levy measure, explicit gradient estimates are derived for the semigroup of the corresponding Levy process with a linear drift. A derivative formula is presented for the conditional distribution of the process at time t under the condition that the process jumps before t. Finally, by using bounded perturbations of the Levy measure, the resulting gradient estimates are extended to linear SDEs driven by Levy-type processes. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:466 / 478
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 2004, Levy processes and stochastic calculus
[2]  
Bakry D, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P43
[3]  
Bismut J.-M., 1984, Large Deviations and the Malliavin Calculus, V45
[4]  
Bogachev VI, 1996, PROBAB THEORY REL, V105, P193
[5]   Estimates of heat kernel of fractional Laplacian perturbed by gradient operators [J].
Bogdan, Krzysztof ;
Jakubowski, Tomasz .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) :179-198
[6]   FORMULAS FOR THE DERIVATIVES OF HEAT SEMIGROUPS [J].
ELWORTHY, KD ;
LI, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) :252-286
[7]  
Gordina M., POTENTIAL A IN PRESS
[8]  
Jacob N., 2001, FOURIER ANAL SEMIGRO, VI
[9]   Time-dependent gradient perturbations of fractional Laplacian [J].
Jakubowski, Tomasz ;
Szczypkowski, Karol .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :319-339
[10]  
KNOPOVA V, ARXIV10031419