Statistical study of the quasi-perpendicular shock ramp widths

被引:51
作者
Hobara, Y. [1 ,2 ,3 ]
Balikhin, M. [3 ]
Krasnoselskikh, V. [4 ]
Gedalin, M. [5 ]
Yamagishi, H. [6 ]
机构
[1] Univ Electrocommun, Dept Elect Engn, Chofu, Tokyo 182, Japan
[2] Univ Electrocommun, Res Stn Seismo Electromagnet, Chofu, Tokyo 182, Japan
[3] Univ Sheffield, ACSE, Sheffield S10 2TN, S Yorkshire, England
[4] CNRS, LPCE, F-45071 Orleans 2, France
[5] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[6] Natl Inst Polar Res, Tokyo 1908518, Japan
关键词
COLLISIONLESS SHOCK; WAVES; FRONT; NONSTATIONARITY; DEMAGNETIZATION; ELECTRONS; MECHANISM; SCALES;
D O I
10.1029/2010JA015659
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi-perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi-perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.
引用
收藏
页数:8
相关论文
共 30 条
[1]   The THEMIS Fluxgate Magnetometer [J].
Auster, H. U. ;
Glassmeier, K. H. ;
Magnes, W. ;
Aydogar, O. ;
Baumjohann, W. ;
Constantinescu, D. ;
Fischer, D. ;
Fornacon, K. H. ;
Georgescu, E. ;
Harvey, P. ;
Hillenmaier, O. ;
Kroth, R. ;
Ludlam, M. ;
Narita, Y. ;
Nakamura, R. ;
Okrafka, K. ;
Plaschke, F. ;
Richter, I. ;
Schwarzl, H. ;
Stoll, B. ;
Valavanoglou, A. ;
Wiedemann, M. .
SPACE SCIENCE REVIEWS, 2008, 141 (1-4) :235-264
[2]   Density-transition scale at quasiperpendicular collisionless shocks [J].
Bale, SD ;
Mozer, FS ;
Horbury, TS .
PHYSICAL REVIEW LETTERS, 2003, 91 (26)
[3]   NEW MECHANISM FOR ELECTRON HEATING IN SHOCKS [J].
BALIKHIN, M ;
GEDALIN, M ;
PETRUKOVICH, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1259-1262
[4]   A study of the dispersion of the electron distribution in the presence of E and B gradients: Application to electron heating at quasi-perpendicular shocks [J].
Balikhin, M ;
Krasnosel'skikh, VV ;
Woolliscroft, LJC ;
Gedalin, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A2) :2029-2040
[5]   KINEMATIC MECHANISM OF ELECTRON HEATING IN SHOCKS - THEORY VS OBSERVATIONS [J].
BALIKHIN, M ;
GEDALIN, M .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (09) :841-844
[6]  
Balikhin M, 1995, ADV SPACE RES, V15, P247, DOI 10.1016/0273-1177(94)00105-A
[7]   Observation of the terrestrial bow shock in quasi-electrostatic subshock regime [J].
Balikhin, MA ;
Nozdrachev, M ;
Dunlop, M ;
Krasnosel'skikh, V ;
Walker, SN ;
Alleyne, HSK ;
Formisano, V ;
Andre, M ;
Balogh, A ;
Eriksson, A ;
Yearby, K .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A8)
[8]   The Cluster magnetic field investigation [J].
Balogh, A ;
Dunlop, MW ;
Cowley, SWH ;
Southwood, DJ ;
Thomlinson, JG ;
Glassmeier, KH ;
Musmann, G ;
Luhr, H ;
Buchert, S ;
Acuna, MH ;
Fairfield, DH ;
Slavin, JA ;
Riedler, W ;
Schwingenschuh, K ;
Kivelson, MG .
SPACE SCIENCE REVIEWS, 1997, 79 (1-2) :65-91
[9]   COLLISIONLESS SHOCK-WAVES IN PLASMAS [J].
BISKAMP, D .
NUCLEAR FUSION, 1973, 13 (05) :719-740
[10]   THE THICKNESS OF THE MAGNETOSHEATH - CONSTRAINTS ON THE POLYTROPIC INDEX [J].
FARRIS, MH ;
PETRINEC, SM ;
RUSSELL, CT .
GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (10) :1821-1824