Polycystic ovary syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models

被引:22
作者
Silva, I. S. [1 ]
Ferreira, C. N. [2 ]
Costa, L. B. X. [3 ]
Soter, M. O. [4 ]
Carvalho, L. M. L. [3 ]
de C. Albuquerque, J. [4 ]
Sales, M. F. [3 ]
Candido, A. L. [5 ]
Reis, F. M. [6 ]
Veloso, A. A. [1 ]
Gomes, K. B. [3 ,4 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Ciencias Comp, Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Colegio Tecn, Belo Horizonte, MG, Brazil
[3] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Genet Ecol & Evolucao, Belo Horizonte, MG, Brazil
[4] Univ Fed Minas Gerais, Fac Farm, Dept Anal Clin & Toxicol, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[5] Univ Fed Minas Gerais, Fac Med, Dept Clin Med, Belo Horizonte, MG, Brazil
[6] Univ Fed Minas Gerais, Fac Med, Dept Ginecol & Obstet, Belo Horizonte, MG, Brazil
关键词
Polycystic Ovary Syndrome; Machine learning; Phenotype; INSULIN-RESISTANCE; WOMEN; POLYMORPHISMS; PREVALENCE; PROLACTIN; ASSOCIATION; CRITERIA; SAMPLE; RISK; GENE;
D O I
10.1007/s40618-021-01672-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose Polycystic Ovary Syndrome (PCOS) is the most frequent endocrinopathy in women of reproductive age. Machine learning (ML) is the area of artificial intelligence with a focus on predictive computing algorithms. We aimed to define the most relevant clinical and laboratory variables related to PCOS diagnosis, and to stratify patients into different phenotypic groups (clusters) using ML algorithms. Methods Variables from a database comparing 72 patients with PCOS and 73 healthy women were included. The BorutaShap method, followed by the Random Forest algorithm, was applied to prediction and clustering of PCOS. Results Among the 58 variables investigated, the algorithm selected in decreasing order of importance: lipid accumulation product (LAP); abdominal circumference; thrombin activatable fibrinolysis inhibitor (TAFI) levels; body mass index (BMI); C-reactive protein (CRP), high-density lipoprotein cholesterol (HDL-c), follicle-stimulating hormone (FSH) and insulin levels; HOMA-IR value; age; prolactin, 17-OH progesterone and triglycerides levels; and family history of diabetes mellitus in first-degree relative as the variables associated to PCOS diagnosis. The combined use of these variables by the algorithm showed an accuracy of 86% and area under the ROC curve of 97%. Next, PCOS patients were gathered into two clusters in the first, the patients had higher BMI, abdominal circumference, LAP and HOMA-IR index, as well as CRP and insulin levels compared to the other cluster. Conclusion The developed algorithm could be applied to select more important clinical and biochemical variables related to PCOS and to classify into phenotypically different clusters. These results could guide more personalized and effective approaches to the treatment of PCOS.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 45 条
[31]  
Qiu Lei, 2015, Chinese Medical Sciences Journal, V30, P44
[32]  
Saadia Zaheera, 2020, Med Arch, V74, P289, DOI 10.5455/medarh.2020.74.289-293
[33]   Predictive analytics and machine learning in stroke and neurovascular medicine [J].
Saber, Hamidreza ;
Somai, Melek ;
Rajah, Gary B. ;
Scalzo, Fabien ;
Liebeskind, David S. .
NEUROLOGICAL RESEARCH, 2019, 41 (08) :681-690
[34]   Correlation between plasminogen activator inhibitor-1 (PAI-1) promoter 4G/5G polymorphism and metabolic/proinflammatory factors in polycystic ovary syndrome [J].
Sales, M. F. ;
Soter, M. O. ;
Candido, A. L. ;
Fernandes, A. P. ;
Oliveira, F. R. ;
Ferreira, A. C. S. ;
Sousa, M. O. ;
Ferreira, C. N. ;
Gomes, K. B. .
GYNECOLOGICAL ENDOCRINOLOGY, 2013, 29 (10) :936-939
[35]  
Santos R., 2001, Arquivo Brasileiro de Cardiologia, V77, P1, DOI DOI 10.1590/S0066-782X2001001500001
[36]   Risk of metabolic complications in the new PCOS phenotypes based on the Rotterdam criteria [J].
Shroff, Rupal ;
Syrop, Craig H. ;
Davis, William ;
Van Voorhis, Bradley J. ;
Dokras, Anuja .
FERTILITY AND STERILITY, 2007, 88 (05) :1389-1395
[37]   Peripheral blood-derived cytokine gene polymorphisms and metabolic profile in women with polycystic ovary syndrome [J].
Soter, Mirelle O. ;
Ferreira, Claudia N. ;
Sales, Mariana F. ;
Candido, Ana L. ;
Reis, Fernando M. ;
Milagres, Katia S. ;
Ronda, Carla ;
Silva, Ieda O. ;
Sousa, Marinez O. ;
Gomes, Karina B. .
CYTOKINE, 2015, 76 (02) :227-235
[38]   A multicenter study of women with nonclassical congenital adrenal hyperplasia: Relationship between genotype and phenotype [J].
Speiser, PW ;
Knochenhauer, ES ;
Dewailly, D ;
Fruzzetti, F ;
Marcondes, JAM ;
Azziz, R .
MOLECULAR GENETICS AND METABOLISM, 2000, 71 (03) :527-534
[39]   Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future [J].
Tang, Qi ;
Li, Xueqin ;
Song, Peipei ;
Xu, Lingzhong .
DRUG DISCOVERIES AND THERAPEUTICS, 2015, 9 (06) :380-385
[40]   Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome [J].
Teede, Helena J. ;
Misso, Marie L. ;
Costello, Michael F. ;
Dokras, Anuja ;
Laven, Joop ;
Moran, Lisa ;
Piltonen, Terhi ;
Norman, Robert J. .
CLINICAL ENDOCRINOLOGY, 2018, 89 (03) :251-268