Polycystic ovary syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models

被引:22
作者
Silva, I. S. [1 ]
Ferreira, C. N. [2 ]
Costa, L. B. X. [3 ]
Soter, M. O. [4 ]
Carvalho, L. M. L. [3 ]
de C. Albuquerque, J. [4 ]
Sales, M. F. [3 ]
Candido, A. L. [5 ]
Reis, F. M. [6 ]
Veloso, A. A. [1 ]
Gomes, K. B. [3 ,4 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Ciencias Comp, Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Colegio Tecn, Belo Horizonte, MG, Brazil
[3] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Genet Ecol & Evolucao, Belo Horizonte, MG, Brazil
[4] Univ Fed Minas Gerais, Fac Farm, Dept Anal Clin & Toxicol, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[5] Univ Fed Minas Gerais, Fac Med, Dept Clin Med, Belo Horizonte, MG, Brazil
[6] Univ Fed Minas Gerais, Fac Med, Dept Ginecol & Obstet, Belo Horizonte, MG, Brazil
关键词
Polycystic Ovary Syndrome; Machine learning; Phenotype; INSULIN-RESISTANCE; WOMEN; POLYMORPHISMS; PREVALENCE; PROLACTIN; ASSOCIATION; CRITERIA; SAMPLE; RISK; GENE;
D O I
10.1007/s40618-021-01672-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose Polycystic Ovary Syndrome (PCOS) is the most frequent endocrinopathy in women of reproductive age. Machine learning (ML) is the area of artificial intelligence with a focus on predictive computing algorithms. We aimed to define the most relevant clinical and laboratory variables related to PCOS diagnosis, and to stratify patients into different phenotypic groups (clusters) using ML algorithms. Methods Variables from a database comparing 72 patients with PCOS and 73 healthy women were included. The BorutaShap method, followed by the Random Forest algorithm, was applied to prediction and clustering of PCOS. Results Among the 58 variables investigated, the algorithm selected in decreasing order of importance: lipid accumulation product (LAP); abdominal circumference; thrombin activatable fibrinolysis inhibitor (TAFI) levels; body mass index (BMI); C-reactive protein (CRP), high-density lipoprotein cholesterol (HDL-c), follicle-stimulating hormone (FSH) and insulin levels; HOMA-IR value; age; prolactin, 17-OH progesterone and triglycerides levels; and family history of diabetes mellitus in first-degree relative as the variables associated to PCOS diagnosis. The combined use of these variables by the algorithm showed an accuracy of 86% and area under the ROC curve of 97%. Next, PCOS patients were gathered into two clusters in the first, the patients had higher BMI, abdominal circumference, LAP and HOMA-IR index, as well as CRP and insulin levels compared to the other cluster. Conclusion The developed algorithm could be applied to select more important clinical and biochemical variables related to PCOS and to classify into phenotypically different clusters. These results could guide more personalized and effective approaches to the treatment of PCOS.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 45 条
[1]   Galectin-3 is a potential biomarker to insulin resistance and obesity in women with polycystic ovary syndrome [J].
Alves, Michelle T. ;
de Souza, Isabella D. P. ;
Ferreira, Claudia N. ;
Candido, Ana Lucia ;
Bizzi, Mariana F. ;
Oliveira, Flavia R. ;
Reis, Fernando M. ;
Gomes, Karina B. .
GYNECOLOGICAL ENDOCRINOLOGY, 2020, 36 (09) :760-763
[2]   Polycystic Ovary Syndrome [J].
Azziz, Ricardo .
OBSTETRICS AND GYNECOLOGY, 2018, 132 (02) :321-336
[3]  
Bock H.H., 2007, Selected contributions in data analysis and classification, P161, DOI [DOI 10.1007/978-3-540-73560-1_15, DOI 10.1007/978-3-540-73560-115]
[4]   The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis [J].
Bozdag, Gurkan ;
Mumusoglu, Sezcan ;
Zengin, Dila ;
Karabulut, Erdem ;
Yildiz, Bulent Okan .
HUMAN REPRODUCTION, 2016, 31 (12) :2841-2855
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Microparticles: Inflammatory and haemostatic biomarkers in Polycystic Ovary Syndrome [J].
Carvalho, L. M. L. ;
Ferreira, C. N. ;
Soter, M. O. ;
Sales, M. F. ;
Rodrigues, K. F. ;
Martins, S. R. ;
Candido, A. L. ;
Reis, F. M. ;
Silva, I. F. O. ;
Campos, F. M. F. ;
Gomes, K. B. .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2017, 443 (0C) :155-162
[7]   Haptoglobin levels, but not Hp1-Hp2 polymorphism, are associated with polycystic ovary syndrome [J].
Carvalho, Laura M. L. ;
Ferreira, Claudia N. ;
de Oliveira, Daisy K. D. ;
Rodrigues, Kathryna F. ;
Duarte, Rita C. F. ;
Teixeira, Marcia F. A. ;
Xavier, Luana B. ;
Candido, Ana Lucia ;
Reis, Fernando M. ;
Silva, Ieda F. O. ;
Campos, Fernanda M. F. ;
Gomes, Karina B. .
JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2017, 34 (12) :1691-1698
[8]   Metformin reduces total microparticles and microparticles-expressing tissue factor in women with polycystic ovary syndrome [J].
Carvalho, Laura M. L. ;
Ferreira, Claudia N. ;
Candido, Ana L. ;
Reis, Fernando M. ;
Ster, Mirelle O. ;
Sales, Mariana F. ;
Silva, Ieda F. O. ;
Nunes, Fernanda F. C. ;
Gomes, Karina Braga .
ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2017, 296 (04) :617-621
[9]   Low Prolactin Is Associated with Sexual Dysfunction and Psychological or Metabolic Disturbances in Middle-Aged and Elderly Men: The European Male Aging Study (EMAS) [J].
Corona, Giovanni ;
Wu, Frederick C. ;
Rastrelli, Giulia ;
Lee, David M. ;
Forti, Gianni ;
O'Connor, Daryl B. ;
O'Neill, Terence W. ;
Pendleton, Neil ;
Bartfai, Gyorgy ;
Boonen, Steven ;
Casanueva, Felipe F. ;
Finn, Joseph D. ;
Huhtaniemi, Ilpo T. ;
Kula, Krzysztof ;
Punab, Margus ;
Vanderschueren, Dirk ;
Rutter, Martin K. ;
Maggi, Mario .
JOURNAL OF SEXUAL MEDICINE, 2014, 11 (01) :240-253
[10]   The Different Phenotypes of Polycystic Ovary Syndrome: No Advantages for Identifying Women with Aggravated Insulin Resistance or Impaired Lipids [J].
Cupisti, S. ;
Haeberle, L. ;
Schell, C. ;
Richter, H. ;
Schulze, C. ;
Hildebrandt, T. ;
Oppelt, P. G. ;
Beckmann, M. W. ;
Dittrich, R. ;
Mueller, A. .
EXPERIMENTAL AND CLINICAL ENDOCRINOLOGY & DIABETES, 2011, 119 (08) :502-508