The metric geometry of the manifold of Riemannian metrics over a closed manifold

被引:34
作者
Clarke, Brian [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
DIFFEOMORPHISM GROUP; SPACES;
D O I
10.1007/s00526-010-0323-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the L (2) Riemannian metric on the manifold of all smooth Riemannian metrics on a fixed closed, finite-dimensional manifold induces a metric space structure. As the L (2) metric is a weak Riemannian metric, this fact does not follow from general results. In addition, we prove several results on the exponential mapping and distance function of a weak Riemannian metric on a Hilbert/Fr,chet manifold. The statements are analogous to, but weaker than, what is known in the case of a Riemannian metric on a finite-dimensional manifold or a strong Riemannian metric on a Hilbert manifold.
引用
收藏
页码:533 / 545
页数:13
相关论文
共 14 条
[1]  
[Anonymous], THESIS U LEIPZIG
[2]  
[Anonymous], 1995, GRADUATE TEXTS MATH
[3]  
CLARKE B, ARXIV09040177V1
[4]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[5]   QUANTUM THEORY OF GRAVITY .I. CANONICAL THEORY [J].
DEWITT, BS .
PHYSICAL REVIEW, 1967, 160 (05) :1113-&
[6]  
Ebin D.G., 1970, P S PURE MATH, P11, DOI DOI 10.1090/PSPUM/015/0267604
[7]  
FREED DS, 1989, MICH MATH J, V36, P323
[8]   THE RIEMANNIAN MANIFOLD OF ALL RIEMANNIAN METRICS [J].
GILMEDRANO, O ;
MICHOR, PW .
QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (166) :183-202
[9]   THE INVERSE FUNCTION THEOREM OF NASH AND MOSER [J].
HAMILTON, RS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (01) :65-222
[10]  
Klingenberg W. P. A., 1995, GRUYTER STUDIES MATH