PARALLEL VECTOR FIELD REGULARIZED NON-NEGATIVE MATRIX FACTORIZATION FOR IMAGE REPRESENTATION

被引:0
|
作者
Peng, Yong [1 ]
Tang, Rixin [1 ]
Kong, Wanzeng [1 ]
Qin, Feiwei [1 ]
Nie, Feiping [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Northwestern Polytech Univ, Ctr OPTIMAL, Xian 710072, Shaanxi, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2018年
基金
中国博士后科学基金;
关键词
Non-negative matrix factorization; Vector field; Image representation; Clustering; PARTS; OBJECTS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Non-negative Matrix Factorization (NMF) is a popular model in machine learning, which can learn parts-based representation by seeking for two non-negative matrices whose product can best approximate the original matrix. However, the manifold structure is not considered by NMF and many of the existing work use the graph Laplacian to ensure the smoothness of the learned representation coefficients on the data manifold. Further, beyond smoothness, it is suggested by recent theoretical work that we should ensure second order smoothness for the NMF mapping, which measures the linearity of the NMF mapping along the data manifold. Based on the equivalence between the gradient field of a linear function and a parallel vector field, we propose to find the NMF mapping which minimizes the approximation error, and simultaneously requires its gradient field to be as parallel as possible. The continuous objective function on the manifold can be discretized and optimized under the general NMF framework. Extensive experimental results suggest that the proposed parallel field regularized NMF provides a better data representation and achieves higher accuracy in image clustering.
引用
收藏
页码:2216 / 2220
页数:5
相关论文
共 50 条
  • [41] IMAGE PREDICTION BASED ON NON-NEGATIVE MATRIX FACTORIZATION
    Turkan, Mehmet
    Guillemot, Christine
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 789 - 792
  • [42] Consensus and complementary regularized non-negative matrix factorization for multi-view image clustering
    Li, Guopeng
    Song, Dan
    Bai, Wei
    Han, Kun
    Tharmarasa, Ratnasingham
    INFORMATION SCIENCES, 2023, 623 : 524 - 538
  • [43] Robust automated graph regularized discriminative non-negative matrix factorization
    Xianzhong Long
    Jian Xiong
    Lei Chen
    Multimedia Tools and Applications, 2021, 80 : 14867 - 14886
  • [44] L3/2 Sparsity Constrained Graph Non-negative Matrix Factorization for Image Representation
    Du, Shiqiang
    Shi, Yuqing
    Wang, Weilan
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 2962 - 2965
  • [45] Attribute community detection based on latent representation learning and graph regularized non-negative matrix factorization
    Shang, Ronghua
    Zhang, Weitong
    Li, Zhiyuan
    Wang, Chao
    Jiao, Licheng
    APPLIED SOFT COMPUTING, 2023, 133
  • [46] LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization
    Wang, Mei-Neng
    You, Zhu-Hong
    Wang, Lei
    Li, Li-Ping
    Zheng, Kai
    NEUROCOMPUTING, 2021, 424 : 236 - 245
  • [47] Constrained Non-negative Matrix Factorization with Graph Laplacian
    Chen, Pan
    He, Yangcheng
    Lu, Hongtao
    Wu, Li
    NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 635 - 644
  • [48] Online Discriminant Projective Non-negative Matrix Factorization
    Zhang, Xiang
    Liao, Qing
    Luo, Zhigang
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 537 - 542
  • [49] Orthogonal graph regularized non-negative matrix factorization under sparse constraints for clustering
    Chen, Yasong
    Qu, Guangwei
    Zhao, Junjian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [50] Video content representation by incremental non-negative matrix factorization
    Bucak, Serhat S.
    Gunsel, Bilge
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 677 - 680