PARALLEL VECTOR FIELD REGULARIZED NON-NEGATIVE MATRIX FACTORIZATION FOR IMAGE REPRESENTATION

被引:0
|
作者
Peng, Yong [1 ]
Tang, Rixin [1 ]
Kong, Wanzeng [1 ]
Qin, Feiwei [1 ]
Nie, Feiping [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Northwestern Polytech Univ, Ctr OPTIMAL, Xian 710072, Shaanxi, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2018年
基金
中国博士后科学基金;
关键词
Non-negative matrix factorization; Vector field; Image representation; Clustering; PARTS; OBJECTS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Non-negative Matrix Factorization (NMF) is a popular model in machine learning, which can learn parts-based representation by seeking for two non-negative matrices whose product can best approximate the original matrix. However, the manifold structure is not considered by NMF and many of the existing work use the graph Laplacian to ensure the smoothness of the learned representation coefficients on the data manifold. Further, beyond smoothness, it is suggested by recent theoretical work that we should ensure second order smoothness for the NMF mapping, which measures the linearity of the NMF mapping along the data manifold. Based on the equivalence between the gradient field of a linear function and a parallel vector field, we propose to find the NMF mapping which minimizes the approximation error, and simultaneously requires its gradient field to be as parallel as possible. The continuous objective function on the manifold can be discretized and optimized under the general NMF framework. Extensive experimental results suggest that the proposed parallel field regularized NMF provides a better data representation and achieves higher accuracy in image clustering.
引用
收藏
页码:2216 / 2220
页数:5
相关论文
共 50 条
  • [31] Dual regularized multi-view non-negative matrix factorization for clustering
    Luo, Peng
    Peng, Jinye
    Guan, Ziyu
    Fan, Jianping
    NEUROCOMPUTING, 2018, 294 : 1 - 11
  • [32] Truncated Cauchy Non-Negative Matrix Factorization
    Guan, Naiyang
    Liu, Tongliang
    Zhang, Yangmuzi
    Tao, Dacheng
    Davis, Larry S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (01) : 246 - 259
  • [33] Correntropy Induced Metric Based Graph Regularized Non-negative Matrix Factorization
    Mao, Bin
    Guan, Naiyang
    Tao, Dacheng
    Huang, Xuhui
    Luo, Zhigang
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 163 - 168
  • [34] A Parallel Non-negative Sparse Large Matrix Factorization
    Anisimov, Anatoly
    Marchenko, Oleksandr
    Nasirov, Emil
    Palamarchuk, Stepan
    ADVANCES IN NATURAL LANGUAGE PROCESSING, 2014, 8686 : 136 - 143
  • [35] Correntropy induced metric based graph regularized non-negative matrix factorization
    Wang, Yuanyuan
    Wu, Shuyi
    Mao, Bin
    Zhang, Xiang
    Luo, Zhigang
    NEUROCOMPUTING, 2016, 204 : 172 - 182
  • [36] General subspace constrained non-negative matrix factorization for data representation
    Liu, Yong
    Liao, Yiyi
    Tang, Liang
    Tang, Feng
    Liu, Weicong
    NEUROCOMPUTING, 2016, 173 : 224 - 232
  • [37] Curavture-Aware Non-negative Matrix Factorization for Clustering
    Lv, Jiaren
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), 2017, : 115 - 120
  • [38] Graph regularized discriminative non-negative matrix factorization for face recognition
    Xianzhong Long
    Hongtao Lu
    Yong Peng
    Wenbin Li
    Multimedia Tools and Applications, 2014, 72 : 2679 - 2699
  • [39] A novel regularized asymmetric non-negative matrix factorization for text clustering
    Aghdam, Mehdi Hosseinzadeh
    Zanjani, Mohammad Daryaie
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (06)
  • [40] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07) : 1080 - 1092