Universal deformation rings and cyclic blocks

被引:28
作者
Bleher, FM [1 ]
Chinburg, T [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Mathematics Subject Classification (1991): 20C05, 11R32, 13D10, 16G10;
D O I
10.1007/s002080000148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we determine the universal deformation rings of certain modular representations of finite groups which belong to cyclic blocks. The representations we consider are those for which every endomorphism is stably equivalent to multiplication by a scalar. We then apply our results to study the counterparts for universal deformation rings of conjectures about embedding problems in Galois theory.
引用
收藏
页码:805 / 836
页数:32
相关论文
共 20 条
[1]  
[Anonymous], 1986, CAMBRIDGE STUDIES AD
[2]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[3]  
Benson, 1991, CAMBRIDGE STUDIES AD, V30
[4]  
BLEHER FM, 1999, LOCATIONS MODULES BR
[5]   Ramified deformation problems [J].
Conrad, B .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (03) :439-513
[6]  
Cornell G., 1997, MODULAR FORMS FERMAT, pxx+582
[7]  
Debes P., 1997, Geometric Galois Actions, LMS Lecture Notes, V243, P119
[8]  
deSmit B, 1997, MODULAR FORMS AND FERMAT'S LAST THEOREM, P313
[9]   On deformation rings and Hecke rings [J].
Diamond, F .
ANNALS OF MATHEMATICS, 1996, 144 (01) :137-166
[10]  
Gouvea F.Q., 1995, CMS C P, V17, P179