On the period of the continued fraction expansion of √22n+1+1

被引:6
作者
Bugeaud, Y
Luca, F
机构
[1] Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58180, Michoacan, Mexico
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2005年 / 16卷 / 01期
关键词
D O I
10.1016/S0019-3577(05)80012-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general result which implies that the period of the continued fraction expansion of root 2(2n+1) + 1 tends to infinity when n tends to infinity.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 18 条
  • [11] LUCA F, 2003, EXPONENT GROUP POINT
  • [12] NARKIEWICZ W, 1990, POLISH SCI PUBL WARS
  • [13] The number of solutions of polynomial-exponential equations
    Schlickewei, HP
    Schmidt, WP
    [J]. COMPOSITIO MATHEMATICA, 2000, 120 (02) : 193 - 225
  • [14] Schmidt W.M, 1980, LECT NOTES MATH, V785
  • [15] Schmidt W.M., 1991, Lecture Notes in Mathematics, V1467
  • [16] SCREMIN A, PERIOD CONTINUED FRA
  • [17] STEWART I, 2002, ALGEBRAIC NUMBER THE
  • [18] ZEROS OF RECURRENCE SEQUENCES
    VANDERPOORTEN, AJ
    SCHLICKEWEI, HP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1991, 44 (02) : 215 - 223