Collapse of a class of three-dimensional Euler vortices

被引:7
作者
Malham, SJA [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2000年 / 456卷 / 2004期
关键词
Euler equations; vortex flow; collapse; singularity;
D O I
10.1098/rspa.2000.0642
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Substitution of the flow field U(x, y, z, t) = {u(x, y, t), upsilon (x, y, t), z gamma (x, y, t)} into the three-dimensional incompressible Euler equations generates a closed system of evolution equations, for the strain rate y(z,y,t) and the two-dimensional vorticity omega (z, y, t), which are uniform in the z-direction. The system models a class of dynamical, stretched three-dimensional vortex flows that include Burgers' vortices. Recent numerical simulations by Ohkitani & Gibbon have revealed that the strain rate gamma (z, y, t) appears to develop a finite-time singularity, from smooth initial data, in the region where y is negative. Here, we prove that, for a large class of initial data, the support of gamma (-) := max{0, -gamma} necessarily collapses to zero in a finite time, while at the same time, the L-1 norm of gamma (-) remains non-zero. Hence, gamma (-) must necessarily become singular before or at the time of collapse. Our vortex flow represents one of a subclass of Euler solutions that have infinite energy. The fundamental question of finite-time singularity formation from smooth initial data for finite-energy three-dimensional Euler solutions remains the important open question.
引用
收藏
页码:2823 / 2833
页数:11
相关论文
共 13 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
Burgers JM., 1948, ADV APPL MECH, V1, P171, DOI 10.1016/S0065-2156(08)70100-5
[3]  
Constantin P, 2000, INT MATH RES NOTICES, V2000, P455
[4]  
Constantin P, 1996, COMMUN PART DIFF EQ, V21, P559
[5]   Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations [J].
Gibbon, JD ;
Fokas, AS ;
Doering, CR .
PHYSICA D, 1999, 132 (04) :497-510
[6]  
GIBBON JD, 2000, SINGULARITY FORMATIO
[7]  
Kato T., 1975, LECT NOTES MATH, P25
[8]   EQUATIONS OF COMBUSTION IN THE PRESENCE OF COMPLEX CHEMISTRY [J].
MANLEY, O ;
MARION, M ;
TEMAM, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :941-967
[9]   STRETCHED VORTICES - THE SINEWS OF TURBULENCE - LARGE-REYNOLDS-NUMBER ASYMPTOTICS [J].
MOFFATT, HK ;
KIDA, S ;
OHKITANI, K .
JOURNAL OF FLUID MECHANICS, 1994, 259 :241-264
[10]  
OHKITANI K, 2001, UNPUB NUMERICAL STUD