Baikov representations, intersection theory, and canonical Feynman integrals

被引:37
作者
Chen, Jiaqi [1 ]
Jiang, Xuhang [2 ,3 ]
Ma, Chichuan [2 ,3 ]
Xu, Xiaofeng [4 ]
Yang, Li Lin [5 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[4] Univ Bern, Inst Theoret Phys, Sidlerstr 5, CH-3012 Bern, Switzerland
[5] Zhejiang Univ, Zhejiang Inst Modern Phys, Dept Phys, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
Higher Order Electroweak Calculations; Higher-Order Perturbative Calculations; Scattering Amplitudes; DIFFERENTIAL-EQUATIONS METHOD; MASTER INTEGRALS; EPSILON; TOOL;
D O I
10.1007/JHEP07(2022)066
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The method of canonical differential equations is an important tool in the calculation of Feynman integrals in quantum field theories. It has been realized that the canonical bases are closely related to d-dimensional d log-form integrands. In this work, we explore the generalized loop-by-loop Baikov representation, and clarify its relation and difference with Feynman integrals using the language of intersection theory. We then utilize the generalized Baikov representation to construct d-dimensional d log-form integrands, and discuss how to convert them to Feynman integrals. We describe the technical details of our method, in particular how to deal with the difficulties encountered in the construction procedure. Our method provides a constructive approach to the problem of finding canonical bases of Feynman integrals, and we demonstrate its applicability to complicated scattering amplitudes involving multiple physical scales.
引用
收藏
页数:63
相关论文
共 89 条
[1]   Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12)
[2]   Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[3]   Cuts from residues: the one-loop case [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06)
[4]   Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2017, 118 (14)
[5]  
Anastasiou C, 2004, J HIGH ENERGY PHYS
[6]  
Aomoto K, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-4-431-53938-4_1
[7]   Magnus and Dyson series for Master Integrals [J].
Argeri, Mario ;
Di Vita, Stefano ;
Mastrolia, Pierpaolo ;
Mirabella, Edoardo ;
Schlenk, Johannes ;
Schubert, Ulrich ;
Tancredi, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03)
[8]   Local integrals for planar scattering amplitudes [J].
Arkani-Hamed, N. ;
Bourjaily, J. ;
Cachazo, F. ;
Trnka, J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06)
[9]  
ARKANI-HAMED N., 2016, Grassmannian geometry of scattering amplitudes
[10]   Singularity Structure of Maximally Supersymmetric Scattering Amplitudes [J].
Arkani-Hamed, Nima ;
Bourjaily, Jacob L. ;
Cachazo, Freddy ;
Trnka, Jaroslav .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)