Robust error estimates for approximations of non-self-adjoint eigenvalue problems

被引:8
作者
Giani, Stefano [1 ]
Grubisic, Luka [2 ]
Miedlar, Agnieszka [3 ]
Ovall, Jeffrey S. [4 ]
机构
[1] Univ Durham, Sch Engn & Comp Sci, S Rd, Durham DH1 3LE, England
[2] Univ Zagreb, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[3] Tech Univ Berlin, Inst Math, Str 17,Juni 136, Berlin, Germany
[4] Portland State Univ, Fariborz Maseeh Dept Math & Stat, 315 Neuberger Hall, Portland, OR 97201 USA
基金
美国国家科学基金会;
关键词
FINITE-ELEMENT-METHOD; A-POSTERIORI; DOMAINS;
D O I
10.1007/s00211-015-0752-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new residual estimates based on Kato's square root theorem for spectral approximations of non-self-adjoint differential operators of convection-diffusion-reaction type. It is not assumed that the eigenvalue/vector approximations are obtained from any particular numerical method, so these estimates may be applied quite broadly. Key eigenvalue and eigenvector error results are illustrated in the context of an hp-adaptive finite element algorithm for spectral computations, where it is shown that the resulting a posteriori error estimates are reliable. The efficiency of these error estimates is also strongly suggested empirically.
引用
收藏
页码:471 / 495
页数:25
相关论文
共 42 条
  • [1] Multifrontal parallel distributed symmetric and unsymmetric solvers
    Amestoy, PR
    Duff, IS
    L'Excellent, JY
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) : 501 - 520
  • [2] [Anonymous], 1988, TRANSLATIONS MATH MO
  • [3] [Anonymous], 2009, SIAM J MATRIX ANAL A
  • [4] [Anonymous], 1993, Statistics for Analytical Chemistry
  • [5] [Anonymous], 00921583 HAL
  • [6] [Anonymous], THESIS U MARYLAND CO
  • [7] [Anonymous], ADV NUMERICAL MATH
  • [8] Square roots of elliptic second order divergence operators on strongly Lipschitz domains:: L2 theory
    Auscher, P
    Tchamitchian, P
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1): : 1 - 12
  • [9] Babuka I., 1991, Finite Element Methods (Part 1), Handbook of Numerical Analysis,, V2, P640
  • [10] THE P AND H-P VERSIONS OF THE FINITE-ELEMENT METHOD, BASIC PRINCIPLES AND PROPERTIES
    BABUSKA, I
    SURI, M
    [J]. SIAM REVIEW, 1994, 36 (04) : 578 - 632