Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance

被引:34
作者
An, Dong [1 ]
Linden, Noah [2 ]
Liu, Jin-Peng [3 ,4 ,5 ]
Montanaro, Ashley [2 ,6 ]
Shao, Changpeng [2 ]
Wang, Jiasu [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Bristol, Sch Math, Fry Bldg, Bristol BS8 1UG, Avon, England
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[6] Phasecraft Ltd, Quantum Technol Innovat Ctr, Bristol BS1 5DD, Avon, England
来源
QUANTUM | 2021年 / 5卷
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 美国国家科学基金会; 欧洲研究理事会;
关键词
D O I
10.22331/q-2021-06-24-481
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inspired by recent progress in quantum algorithms for ordinary and partial differential equations, we study quantum algorithms for stochastic differential equations (SDEs). Firstly we provide a quantum algorithm that gives a quadratic speed-up for multilevel Monte Carlo methods in a general setting. As applications, we apply it to compute expectation values determined by classical solutions of SDEs, with improved dependence on precision. We demonstrate the use of this algorithm in a variety of applications arising in mathematical finance, such as the Black-Scholes and Local Volatility models, and Greeks. We also provide a quantum algorithm based on sublinear binomial sampling for the binomial option pricing model with the same improvement.
引用
收藏
页数:37
相关论文
共 61 条
[1]  
6Leisen D.P.J., 1996, Applied Mathematical Finance, V3, P319, DOI [10.1080/13504869600000015, DOI 10.1080/13504869600000015]
[2]   Variable time amplitude amplification and quantum algorithms for linear algebra problems [J].
Ambainis, Andris .
29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 :636-647
[3]  
An D., 2019, ARXIV190905500
[4]  
[Anonymous], 1983, Option Pricing
[5]  
Atkinson K. E., 2008, An Introduction to Numerical Analysis
[6]   Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Ostrander, Aaron ;
Wang, Guoming .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) :1057-1081
[7]   High-order quantum algorithm for solving linear differential equations [J].
Berry, Dominic W. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (10)
[8]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[9]  
Bodie Z., 2009, Investments
[10]  
Bouland A., 2020, ARXIV201106492