Isolated Calmness and Sharp Minima via Holder Graphical Derivatives

被引:0
作者
Kruger, Alexander Y. [1 ,2 ]
Lopez, Marco A. [1 ,3 ]
Yang, Xiaoqi [4 ]
Zhu, Jiangxing [5 ]
机构
[1] Federat Univ Australia, Ctr Informat & Appl Optimizat, Ballarat, Australia
[2] RMIT Univ, Melbourne, Australia
[3] Univ Alicante, Dept Math, Alicante, Spain
[4] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[5] Yunnan Univ, Dept Math, Kunming, Peoples R China
关键词
H older subregularity; Holder calmness; H older sharp minimum; Holder graphical derivatives; Semi-infinite programming; METRIC REGULARITY; SUBREGULARITY; STABILITY; ORDER;
D O I
10.1007/s11228-022-00628-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper utilizes H older graphical derivatives for characterizing H older strong subregularity, isolated calmness and sharp minimum. As applications, we characterize H older isolated calmness in linear semi-infinite optimization and Holder sharp minimizers of some penalty functions for constrained optimization.
引用
收藏
页码:1423 / 1441
页数:19
相关论文
共 29 条
  • [1] Artacho FJA, 2014, J NONLINEAR CONVEX A, V15, P35
  • [2] Aubin J-P., 1990, SET-VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
  • [3] Aubin JP., 1984, APPL NONLINEAR ANAL
  • [4] Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization
    Canovas, M. J.
    Hantoute, A.
    Lopez, M. A.
    Parra, J.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (03) : 485 - 500
  • [5] Isolated calmness of solution mappings in convex semi-infinite optimization
    Canovas, M. J.
    Dontchev, A. L.
    Lopez, M. A.
    Parra, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (02) : 829 - 837
  • [6] Metric regularity of semi-infinite constraint systems
    Cánovas, MJ
    Dontchev, L
    López, MA
    Parra, J
    [J]. MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 329 - 346
  • [7] Dontchev AL., 2014, SPRINGER SERIES OPER, V2nd
  • [8] Metric subregularity of order q and the solving of inclusions
    Gaydu, Michael
    Geoffroy, Michel H.
    Jean-Alexis, Celia
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (01): : 147 - 161
  • [9] Goberna MA, 1998, NONCON OPTIM ITS APP, V25, P3
  • [10] A unified augmented Lagrangian approach to duality and exact penalization
    Huang, XX
    Yang, XQ
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) : 533 - 552