Constacyclic Codes over Finite Chain Rings of Characteristic p

被引:7
作者
Alabiad, Sami [1 ]
Alkhamees, Yousef [1 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
关键词
finite ring; linear code; polynomials; coding theory; CYCLIC CODES; NEGACYCLIC CODES; LENGTH; Z(4);
D O I
10.3390/axioms10040303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a finite commutative chain ring of characteristic p with invariants p,r, and k. In this paper, we study lambda-constacyclic codes of an arbitrary length N over R, where lambda is a unit of R. We first reduce this to investigate constacyclic codes of length ps (N=n1ps, p does not divide n1) over a certain finite chain ring CR(uk,rb) of characteristic p, which is an extension of R. Then we use discrete Fourier transform (DFT) to construct an isomorphism gamma between R[x]/ and a direct sum & OPLUS;b & ISIN;IS(rb) of certain local rings, where I is the complete set of representatives of p-cyclotomic cosets modulo n1. By this isomorphism, all codes over R and their dual codes are obtained from the ideals of S(rb). In addition, we determine explicitly the inverse of gamma so that the unique polynomial representations of lambda-constacyclic codes may be calculated. Finally, for k=2 the exact number of such codes is provided.
引用
收藏
页数:14
相关论文
共 35 条
[11]   Negacyclic codes of length 2s over Galois rings [J].
Dinh, HQ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4252-4262
[12]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[13]  
Dougherty ST, 2006, DESIGN CODE CRYPTOGR, V39, P127, DOI 10.1007/s10623-005-2773-x
[14]   On modular cyclic codes [J].
Dougherty, Steven T. ;
Park, Young Ho .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) :31-57
[15]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[16]   Cyclic codes over R = Fp + uFp + ... + uk-1Fp with length psn [J].
Han, Mu ;
Ye, Youpei ;
Zhu, Shixin ;
Xu, Chungen ;
Dou, Bennian .
INFORMATION SCIENCES, 2011, 181 (04) :926-934
[17]  
Huffman W., 2003, Fundamental of Error -correcting Codes
[18]  
Huffman WC., 1998, HDB CODING THEORY
[19]   On cyclic codes over Galois rings [J].
Kaur, Jasbir ;
Dutt, Sucheta ;
Sehmi, Ranjeet .
DISCRETE APPLIED MATHEMATICS, 2020, 280 :156-161
[20]   Cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :834-846