Encoder Fusion Network with Co-Attention Embedding for Referring Image Segmentation

被引:122
作者
Feng, Guang [1 ,2 ]
Hu, Zhiwei [1 ,2 ]
Zhang, Lihe [1 ,2 ]
Lu, Huchuan [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Ningbo Inst, Dalian, Peoples R China
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
AGGREGATION;
D O I
10.1109/CVPR46437.2021.01525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, referring image segmentation has aroused widespread interest. Previous methods perform the multi-modal fusion between language and vision at the decoding side of the network. And, linguistic feature interacts with visual feature of each scale separately, which ignores the continuous guidance of language to multi-scale visual features. In this work, we propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network, and uses language to refine the multi-modal features progressively. Moreover, a co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features, which can promote the consistent of the cross-modal information representation in the semantic space. Finally, we propose a boundary enhancement module (BEM) to make the network pay more attention to the fine structure. The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance under different evaluation metrics without any post-processing.
引用
收藏
页码:15501 / 15510
页数:10
相关论文
共 45 条
[1]  
[Anonymous], 2020, IEEE C COMP VIS PATT, DOI DOI 10.1109/CVPR42600.2020.00448
[2]   See-Through-Text Grouping for Referring Image Segmentation [J].
Chen, Ding-Jie ;
Jia, Songhao ;
Lo, Yi-Chen ;
Chen, Hwann-Tzong ;
Liu, Tyng-Luh .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :7453-7462
[3]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[6]   Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [J].
Chen, Xiaokang ;
Lin, Kwan-Yee ;
Wang, Jingbo ;
Wu, Wayne ;
Qian, Chen ;
Li, Hongsheng ;
Zeng, Gang .
COMPUTER VISION - ECCV 2020, PT XI, 2020, 12356 :561-577
[7]  
Chen Y., 2019, BMVC
[8]   Boundary-Preserving Mask R-CNN [J].
Cheng, Tianheng ;
Wang, Xinggang ;
Huang, Lichao ;
Liu, Wenyu .
COMPUTER VISION - ECCV 2020, PT XIV, 2020, 12359 :660-676
[9]   Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation [J].
Ding, Henghui ;
Jiang, Xudong ;
Shuai, Bing ;
Liu, Ai Qun ;
Wang, Gang .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2393-2402
[10]   CACNet: Salient object detection via context aggregation and contrast emb e dding [J].
Feng, Guang ;
Bo, Hongguang ;
Sun, Jiayu ;
Zhang, Lihe ;
Lu, Huchuan .
NEUROCOMPUTING, 2020, 403 :33-44