Super-diffusion versus competitive advection: a simulation

被引:14
作者
Del Moro, D. [1 ]
Giannattasio, F. [1 ]
Berrilli, F. [1 ]
Consolini, G. [2 ]
Lepreti, F. [3 ,4 ]
Gosic, M. [5 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[2] INAF Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy
[3] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy
[4] CNISM, Unita Ric Cosenza, I-87036 Arcavacata Di Rende, Italy
[5] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain
关键词
convection; hydrodynamics; turbulence; Sun: photosphere; MAGNETIC BRIGHT POINTS; STELLAR TURBULENT CONVECTION; G-BAND BRIGHT; IMAGING SPECTROPOLARIMETRY; ANOMALOUS DIFFUSION; ELEMENTS; DYNAMICS; FLOWS; DISPERSAL; EVOLUTION;
D O I
10.1051/0004-6361/201424624
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Magnetic element tracking is often used to study the transport and diffusion of the magnetic field on the solar photosphere. From the analysis of the displacement spectrum of these tracers, it has recently been agreed that a regime of super-diffusivity dominates the solar surface. Quite habitually this result is discussed in the framework of fully developed turbulence. Aims. However, the debate whether the super-diffusivity is generated by a turbulent dispersion process, by the advection due to the convective pattern, or even by another process is still open, as is the question of the amount of diffusivity at the scales relevant to the local dynamo process. Methods. To understand how such peculiar diffusion in the solar atmosphere takes place, we compared the results from two different data sets (ground-based and space-borne) and developed a simulation of passive tracers advection by the deformation of a Voronoi network. Results. The displacement spectra of the magnetic elements obtained by the data sets are consistent in retrieving a super-diffusive regime for the solar photosphere, but the simulation also shows a super-diffusive displacement spectrum: its competitive advection process can reproduce the signature of super-diffusion. Conclusions. Therefore, it is not necessary to hypothesize a totally developed turbulence regime to explain the motion of the magnetic elements on the solar surface.
引用
收藏
页数:6
相关论文
共 59 条
[1]   TURBULENT DIFFUSION IN THE PHOTOSPHERE AS DERIVED FROM PHOTOSPHERIC BRIGHT POINT MOTION [J].
Abramenko, V. I. ;
Carbone, V. ;
Yurchyshyn, V. ;
Goode, P. R. ;
Stein, R. F. ;
Lepreti, F. ;
Capparelli, V. ;
Vecchio, A. .
ASTROPHYSICAL JOURNAL, 2011, 743 (02)
[2]   Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes [J].
Beeck, B. ;
Collet, R. ;
Steffen, M. ;
Asplund, M. ;
Cameron, R. H. ;
Freytag, B. ;
Hayek, W. ;
Ludwig, H. -G. ;
Schuessler, M. .
ASTRONOMY & ASTROPHYSICS, 2012, 539
[3]   PERVASIVE LINEAR POLARIZATION SIGNALS IN THE QUIET SUN [J].
Bellot Rubio, L. R. ;
Suarez, D. Orozco .
ASTROPHYSICAL JOURNAL, 2012, 757 (01)
[4]   Measurements of solar magnetic element dispersal [J].
Berger, TE ;
Löfdahl, MG ;
Shine, RA ;
Title, AM .
ASTROPHYSICAL JOURNAL, 1998, 506 (01) :439-449
[5]   Spatial clustering of photospheric structures [J].
Berrilli, F ;
Del Moro, D ;
Russo, S ;
Consolini, G ;
Straus, T .
ASTROPHYSICAL JOURNAL, 2005, 632 (01) :677-683
[6]   Magnetic pattern at supergranulation scale: the void size distribution [J].
Berrilli, F. ;
Scardigli, S. ;
Del Moro, D. .
ASTRONOMY & ASTROPHYSICS, 2014, 568
[7]   Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales [J].
Berrilli, F. ;
Scardigli, S. ;
Giordano, S. .
SOLAR PHYSICS, 2013, 282 (02) :379-387
[8]  
Bhm-Vitense E., 1958, ZA, V46, P108
[9]   CONVECTIVELY DRIVEN VORTEX FLOWS IN THE SUN [J].
Bonet, J. A. ;
Marquez, I. ;
Sanchez Almeida, J. ;
Cabello, I. ;
Domingo, V. .
ASTROPHYSICAL JOURNAL LETTERS, 2008, 687 (02) :L131-L134
[10]   Anomalous diffusion of solar magnetic elements [J].
Cadavid, AC ;
Lawrence, JK ;
Ruzmaikin, AA .
ASTROPHYSICAL JOURNAL, 1999, 521 (02) :844-850