Magnetoresistance in copper at high frequency and high magnetic fields

被引:9
作者
Ahn, S. [1 ]
Youn, S. W. [2 ]
Yoo, J. [1 ,2 ]
Kim, D. L. [1 ]
Jeong, J. [2 ]
Ahn, M. [1 ]
Kim, J. [2 ]
Lee, D. [2 ]
Lee, J. [1 ]
Seong, T. [1 ]
Semertzidis, Y. K. [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[2] Inst for Basic Sci Korea, Ctr Axion & Precis Phys Res, Daejeon 34047, South Korea
来源
JOURNAL OF INSTRUMENTATION | 2017年 / 12卷
关键词
Dark Matter detectors (WIMPs; axions; etc.); Detector design and construction technologies and materials; Microwave radiometers; ELECTRONS; METALS;
D O I
10.1088/1748-0221/12/10/P10023
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In halo dark matter axion search experiments, cylindrical microwave cavities are typically employed to detect signals from the axion-photon conversion. To enhance the conversion power and reduce the noise level, cavities are placed in strong solenoid magnetic fields at sufficiently low temperatures. Exploring high mass regions in cavity-based axion search experiments requires high frequency microwave cavities and thus understanding cavity properties at high frequencies in extreme conditions is deemed necessary. We present a study of the magnetoresistance of copper using a cavity with a resonant frequency of 12.9 GHz at the liquid helium temperature in magnetic fields up to 15 T utilizing a second generation high temperature superconducting magnet. The observations are interpreted to be consistent with the anomalous skin effect and size effect. This is the first measurement of magnetoresistance at a high frequency ( > 10 GHz) in high magnetic fields ( > 10 T).
引用
收藏
页数:9
相关论文
共 17 条
[1]   Design and operational experience of a microwave cavity axion detector for the 20-100 μeV range [J].
Al Kenany, S. ;
Anil, M. A. ;
Backes, K. M. ;
Brubaker, B. M. ;
Cahn, S. B. ;
Carosi, G. ;
Gurevich, Y. V. ;
Kindel, W. F. ;
Lamoreaux, S. K. ;
Lehnert, K. W. ;
Lewis, S. M. ;
Malnou, M. ;
Palken, D. A. ;
Rapidis, N. M. ;
Root, J. R. ;
Simanovskaia, M. ;
Shokair, T. M. ;
Urdinaran, I. ;
van Bibber, K. A. ;
Zhong, L. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 854 :11-24
[2]  
[Anonymous], JETP
[3]  
[Anonymous], ELECT TRANSPORT META
[4]   SQUID-Based Microwave Cavity Search for Dark-Matter Axions [J].
Asztalos, S. J. ;
Carosi, G. ;
Hagmann, C. ;
Kinion, D. ;
van Bibber, K. ;
Hotz, M. ;
Rosenberg, L. J. ;
Rybka, G. ;
Hoskins, J. ;
Hwang, J. ;
Sikivie, P. ;
Tanner, D. B. ;
Bradley, R. ;
Clarke, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[5]   Updating the axion cold dark matter energy density [J].
Bae, Kyu Jung ;
Huh, Ji-Haeng ;
Kim, Jihn E. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (09)
[6]   Calculation of the axion mass based on high-temperature lattice quantum chromodynamics [J].
Borsanyi, S. ;
Fodor, Z. ;
Guenther, J. ;
Kampert, K. -H. ;
Katz, S. D. ;
Kawanai, T. ;
Kovacs, T. G. ;
Mages, S. W. ;
Pasztor, A. ;
Pittler, F. ;
Redondo, J. ;
Ringwald, A. ;
Szabo, K. K. .
NATURE, 2016, 539 (7627) :69-+
[7]  
Chambers R. G., 1950, PROC R SOC LON SER-A, V202, P378, DOI [10.1098/rspa.1950.0107, DOI 10.1098/RSPA.1950.0107]
[8]   No-insulation multi-width winding technique for high temperature superconducting magnet [J].
Hahn, Seungyong ;
Kim, Youngjae ;
Park, Dong Keun ;
Kim, Kwangmin ;
Voccio, John P. ;
Bascunan, Juan ;
Iwasa, Yukikazu .
APPLIED PHYSICS LETTERS, 2013, 103 (17)
[9]  
Hahn S, 2011, IEEE T APPL SUPERCON, V21, P1592, DOI [10.1109/TASC.2010.2093492, 10.1109/tasc.2010.2093492]
[10]  
LIFSHITZ IM, 1957, SOV PHYS JETP-USSR, V4, P41