Engineering carbon chains from mechanically stretched graphene-based materials

被引:45
作者
Erdogan, E. [1 ]
Popov, I. [2 ,3 ]
Rocha, C. G. [4 ,5 ]
Cuniberti, G. [4 ,5 ,6 ]
Roche, S. [4 ,5 ,7 ,8 ]
Seifert, G. [1 ]
机构
[1] Tech Univ Dresden, Inst Phys Chem, D-01062 Dresden, Germany
[2] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[3] Trinity Coll Dublin, CRANN, Dublin 2, Ireland
[4] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[5] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[6] POSTECH, Div IT Convergence Engn, Pohang 790784, South Korea
[7] CSIC, ICN, Ctr Invest Nanociencia & Nanotecnol, E-08193 Bellaterra, Spain
[8] ICREA, E-08100 Barcelona, Spain
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 04期
关键词
TRANSPORT; NANOTUBES;
D O I
10.1103/PhysRevB.83.041401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrical response of graphene-based materials can be tailored under mechanical stress. We report different switching behaviors that take place in mechanically deformed graphene nanoribbons prior to the breakage of the junction. By performing tight-binding molecular dynamics, the study of structural changes of graphene nanoribbons with different widths is achieved, revealing that carbon chains are the ultimate bridges before the junction breaks. The electronic and transport calculations show that binary ON/OFF states can be switched prior to and during breakage depending on the atomic details of the nanoribbon. This work supports the interpretation of recent experiments on nonvolatile memory element engineering based on graphene break junctions.
引用
收藏
页数:4
相关论文
共 24 条
[1]   Single-wall-carbon-nanotube/single-carbon-chain molecular junctions [J].
Boerrnert, Felix ;
Boerrnert, Carina ;
Gorantla, Sandeep ;
Liu, Xianjie ;
Bachmatiuk, Alicja ;
Joswig, Jan-Ole ;
Wagner, Frank R. ;
Schaeffel, Franziska ;
Warner, Jamie H. ;
Schoenfelder, Ronny ;
Rellinghaus, Bernd ;
Gemming, Thomas ;
Thomas, Juergen ;
Knupfer, Martin ;
Buechner, Bernd ;
Ruemmeli, Mark H. .
PHYSICAL REVIEW B, 2010, 81 (08)
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   Electronic and transport properties of nanotubes [J].
Charlier, Jean-Christophe ;
Blase, Xavier ;
Roche, Stephan .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :677-732
[4]  
Chen W, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.085410
[5]   Charge Transport in Disordered Graphene-Based Low Dimensional Materials [J].
Cresti, Alessandro ;
Nemec, Norbert ;
Biel, Blanca ;
Niebler, Gabriel ;
Triozon, Francois ;
Cuniberti, Gianaurelio ;
Roche, Stephan .
NANO RESEARCH, 2008, 1 (05) :361-394
[6]   Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics [J].
De Arco, Lewis Gomez ;
Zhang, Yi ;
Schlenker, Cody W. ;
Ryu, Koungmin ;
Thompson, Mark E. ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (05) :2865-2873
[7]   Formation of atomic carbon chains from graphene nanoribbons [J].
Hobi, Edwin, Jr. ;
Pontes, Renato B. ;
Fazzio, A. ;
da Silva, Antonio J. R. .
PHYSICAL REVIEW B, 2010, 81 (20)
[8]   Carbon Nanotubes as Ultrahigh Quality Factor Mechanical Resonators [J].
Huttel, Andreas K. ;
Steele, Gary A. ;
Witkamp, Benoit ;
Poot, Menno ;
Kouwenhoven, Leo P. ;
van der Zant, Herre S. J. .
NANO LETTERS, 2009, 9 (07) :2547-2552
[9]   Deriving Carbon Atomic Chains from Graphene [J].
Jin, Chuanhong ;
Lan, Haiping ;
Peng, Lianmao ;
Suenaga, Kazu ;
Iijima, Sumio .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[10]   ABINITIO STUDIES ON POLYMERS .1. LINEAR INFINITE POLYYNE [J].
KARPFEN, A .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (16) :3227-3237