A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer

被引:241
作者
Braunstein, Steve
Karpisheva, Ksenia
Pola, Carolina
Goldberg, Judith
Hochman, Tsivia
Yee, Herman
Cangiarella, Joan
Arju, Rezina
Formenti, Silvia C.
Schneider, Robert J. [1 ]
机构
[1] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA
[2] NYU, Sch Med, Div Biostat, Dept Environm Med, New York, NY 10016 USA
[3] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
[4] NYU, Sch Med, Inst Canc, New York, NY 10016 USA
关键词
D O I
10.1016/j.molcel.2007.10.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translational regulation is critical in cancer development and progression. Translation sustains tumor growth and development of a tumor vasculature, a process known as angiogenesis, which is activated by hypoxia. Here we first demonstrate that a majority of large advanced breast cancers overexpress translation regulatory protein 4E-BP1 and initiation factor elF4G. Using model animal and cell studies, we then show that overexpressed 4E-BP1 and elF4G orchestrate a hypoxia-activated switch from cap-dependent to cap-independent mRNA translation that promotes increased tumor angiogenesis and growth at the level of selective mRNA translation. Elevated levels of 4E-BP1 trigger hypoxia inhibition of cap-dependent mRNA translation at high-oxygen levels and, with eIF4G, increase selective translation of mRNAs containing internal ribosome entry sites (IRESs) that include key proangiogenic, hypoxia, and survival mRNAs. The switch from cap-dependent to cap-independent mRNA translation facilitates tumor angiogenesis and hypoxia responses in animal models.
引用
收藏
页码:501 / 512
页数:12
相关论文
共 50 条
[21]   An activity-dependent switch to cap-independent translation triggered by eIF4E dephosphorylation [J].
Dyer, JR ;
Michel, S ;
Lee, W ;
Castellucci, VF ;
Wayne, NL ;
Sossin, WS .
NATURE NEUROSCIENCE, 2003, 6 (03) :219-220
[22]   On the origin of the cap-dependent initiation of translation in eukaryotes [J].
Hernandez, Greco .
TRENDS IN BIOCHEMICAL SCIENCES, 2009, 34 (04) :166-175
[23]   Modulation of cap-dependent translation by nucleoside phosphoramidates [J].
Ghosh, P ;
Bitterman, P ;
Polunovsky, V ;
Benymov, A ;
Wagner, CR .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 :U656-U656
[24]   Cap-independent translation initiation of the unspliced RNA of retroviruses [J].
Barrera, Aldo ;
Olguin, Valeria ;
Vera-Otarola, Jorge ;
Lopez-Lastra, Marcelo .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2020, 1863 (09)
[25]   RNA determinants of picornavirus cap-independent translation initiation [J].
Stewart, SR ;
Semler, BL .
SEMINARS IN VIROLOGY, 1997, 8 (03) :242-255
[26]   Structural Regulation of Cap-Independent Translation in Enterovirus 71 [J].
Tolbert, Michele ;
Morgan, Christopher E. ;
Li, Mei-Ling ;
Tolbert, Blanton S. .
BIOPHYSICAL JOURNAL, 2017, 112 (03) :516A-516A
[27]   Crystal structure of a cap-independent translation enhancer RNA [J].
Lewicka, Anna ;
Roman, Christina ;
Jones, Stacey ;
Disare, Michael ;
Rice, Phoebe A. ;
Piccirilli, Joseph A. .
NUCLEIC ACIDS RESEARCH, 2023, 51 (16) :8891-8907
[28]   3′ Cap-Independent Translation Enhancers of Plant Viruses [J].
Simon, Anne E. ;
Miller, W. Allen .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 67, 2013, 67 :21-42
[29]   New structural insights into cap-independent translation initiation [J].
Brilot, Axel ;
Koh, Cha San ;
Grigorieff, Nikolaus ;
Korostelev, Andrei .
FASEB JOURNAL, 2014, 28 (01)
[30]   A Viral Noncoding RNA Generated by cis-Element-Mediated Protection against 5′→3′ RNA Decay Represses both Cap-Independent and Cap-Dependent Translation [J].
Iwakawa, Hiro-oki ;
Mizumoto, Hiroyuki ;
Nagano, Hideaki ;
Imoto, Yuka ;
Takigawa, Kazuma ;
Sarawaneeyaruk, Siriruk ;
Kaido, Masanori ;
Mise, Kazuyuki ;
Okuno, Tetsuro .
JOURNAL OF VIROLOGY, 2008, 82 (20) :10162-10174