Mineralogy and mineral chemistry of quartz: A review

被引:130
作者
Goetze, Jens [1 ]
Pan, Yuanming [2 ]
Muller, Axel [3 ,4 ]
机构
[1] TU Bergakad Freiberg, Inst Mineral, Brennhausgasse 14, D-09599 Freiberg, Germany
[2] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK 57N 5E2, Canada
[3] Univ Oslo, Nat Hist Museum, POB 1172, N-0318 Oslo, Norway
[4] Nat Hist Museum, Cromwell Rd, London SW7 5BD, England
关键词
quartz; mineral chemistry; real structure; point defects; trace elements; electron paramagnetic resonance (EPR); cathodoluminescenece (CL); ELECTRON-PARAMAGNETIC-RESONANCE; RADIATION-INDUCED DAMAGE; HOLE ALUMINUM CENTERS; TRACE-ELEMENT COMPOSITION; LA-ICP-MS; RAY-ABSORPTION SPECTROSCOPY; O-17 HYPERFINE INTERACTION; MASSIVE ROSE QUARTZ; RARE-EARTH-ELEMENTS; OH-POINT-DEFECTS;
D O I
10.1180/mgm.2021.72
中图分类号
P57 [矿物学];
学科分类号
070901 ;
摘要
Quartz (trigonal, low-temperature alpha-quartz) is the most important polymorph of the silica (SiO2) group and one of the purest minerals in the Earth crust. The mineralogy and mineral chemistry of quartz are determined mainly by its defect structure. Certain point defects, dislocations and micro-inclusions can be incorporated into quartz during crystallisation under various thermodynamic conditions and by secondary processes such as alteration, irradiation, diagenesis or metamorphism. The resulting real structure is a fingerprint of the specific physicochemical environment of quartz formation and also determines the quality and applications of SiO2 raw materials. Point defects in quartz can be related to imperfections associated with silicon or oxygen vacancies (intrinsic defects), to different types of displaced atoms, and/or to the incorporation of foreign ions in lattice sites and interstitial positions (extrinsic defects). Due to mismatch in charges and ionic radii only a limited number of ions can substitute for Si4+ in the crystal lattice or can be incorporated in interstitial positions. Therefore, most impurity elements in quartz are present at concentrations below 1 ppm. The structural incorporation in a regular Si4+ lattice site has been proven for Al3+, Ga3+, Fe3+, B3+, Ge4+, Ti4+, P5+ and H+, of which Al3+ is by far the most common and typically the most abundant. Unambiguous detection and characterisation of defect structures in quartz are a technical challenge and can only be successfully realised by a combination of advanced analytical methods such as electron paramagnetic resonance (EPR) spectroscopy, cathodoluminescence (CL) microscopy and spectroscopy as well as spatially resolved trace-element analysis such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary-ion mass spectrometry (SIMS). The present paper presents a review of the state-of-the-art knowledge concerning the mineralogy and mineral-chemistry of quartz and illustrates important geological implications of the properties of quartz.
引用
收藏
页码:639 / 664
页数:26
相关论文
共 270 条
[1]   Trace elements in quartz shed light on sediment provenance [J].
Ackerson, Michael R. ;
Tailby, Nicholas D. ;
Watson, E. Bruce .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2015, 16 (06) :1894-1904
[2]  
Alessi A., 2014, APPL EPR RAD RES, P255, DOI 10.1007/978-3-319-09216-47
[3]   X-RAY-INDUCED LUMINESCENCE IN CRYSTALLINE SIO2 [J].
ALONSO, PJ ;
HALLIBURTON, LE ;
KOHNKE, EE ;
BOSSOLI, RB .
JOURNAL OF APPLIED PHYSICS, 1983, 54 (09) :5369-5375
[4]  
[Anonymous], 2002, Luminescent Spectra of Minerals
[5]  
[Anonymous], 2012, QUARTZ DEPOSITS MINE, DOI DOI 10.1007/978-3-642-22161-3_15
[6]   Origin of Ti-rich rims in quartz phenocrysts from the Upper Bandelier Tuff and the Tunnel Spring Tuff, southwestern USA [J].
Audetat, Andreas .
CHEMICAL GEOLOGY, 2013, 360 :99-104
[7]   [TIO4]- IN ALPHA-QUARTZ STUDIED BY LOW-TEMPERATURE ELECTRON-PARAMAGNETIC RESONANCE [J].
BAILEY, P ;
PAWLIK, T ;
SOTHE, H ;
SPAETH, JM ;
WEIL, JA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (15) :4063-4073
[8]   EPR OF [TIO4/LI]B0 AND RELATED CENTERS IN X-IRRADIATED ALPHA-QUARTZ [J].
BAILEY, P ;
WEIL, JA .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1992, 53 (04) :601-610
[9]   EPR STUDY OF THE [SIO4/LI]0 CENTER IN ALPHA-QUARTZ [J].
BAILEY, P ;
WEIL, JA .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1991, 87 (19) :3143-3146
[10]   THE EPR SPECTRAL PARAMETERS AND DYNAMIC PROPERTIES OF THE CENTER [TIO4 NA]A0 IN X-IRRADIATED ALPHA-QUARTZ [J].
BAILEY, P ;
WEIL, JA .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1992, 53 (02) :309-318