Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem

被引:65
作者
Berger, Arno [1 ]
Hill, Theodore P. [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Large Spread; Decimal Digit; Positive Random Variable; Mathematical Intelligencer Figure; Easy Derivation;
D O I
10.1007/s00283-010-9182-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:85 / 91
页数:7
相关论文
共 19 条
[1]  
ALDOUS D, 2010, STATISTICS, P2010
[2]  
ALDOUS D, 2009, WHEN CAN ONE TEST EX
[3]  
Benford Frank, 1938, Proc. Am. Philos. Soc., P551, DOI DOI 10.2307/984802
[4]   One-dimensional dynamical systems and Benford's law [J].
Berger, A ;
Bunimovich, LA ;
Hill, TP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (01) :197-219
[5]  
BERGER A, 2010, LARGE SPREAD IMPLY B
[6]  
Berger A., 2009, Benford Online Bibliography
[7]  
Delahaye, 2009, MATH SCI HUMAINES, V186, P5, DOI [10.4000/msh.11034, DOI 10.4000/MSH.11034]
[8]  
Feller W., 1966, An introduction to probability theory and its applications, V2
[9]   A Simple Explanation of Benford's Law [J].
Fewster, R. M. .
AMERICAN STATISTICIAN, 2009, 63 (01) :26-32
[10]   ABOUT MAZES AND HOW THEY CAN BE TRAVERSED [J].
GARDNER, M .
SCIENTIFIC AMERICAN, 1959, 200 (01) :132-&