Positional information from oscillatory phase shifts : insights from in silico evolution

被引:12
作者
Beaupeux, M. [1 ]
Francois, P. [1 ]
机构
[1] McGill Univ, Ernest Rutherford Phys Bldg, Montreal, PQ H3A 2T8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
gene networks; gene oscillators; vertebrate segmentation; evolution; phase encoding; WAVE-FRONT MODEL; SEGMENTATION CLOCK; GENE-EXPRESSION; VERTEBRATE SEGMENTATION; 2-SEGMENT PERIODICITY; SOMITE SEGMENTATION; NETWORKS; GRADIENT; DYNAMICS; FGF;
D O I
10.1088/1478-3975/13/3/036009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Complex cellular decisions are based on temporal dynamics of pathways, including genetic oscillators. In development, recent works on vertebrae formation have suggested that relative phase of genetic oscillators encode positional information, including differentiation front defining vertebrae positions. Precise mechanisms for this are still unknown. Here, we use computational evolution to find gene network topologies that can compute the phase difference between oscillators and convert it into a decoder morphogen concentration. Two types of networks are discovered, based on symmetry properties of the decoder gene. So called asymmetric networks are studied, and two submodules are identified converting phase information into an amplitude variable. Those networks naturally display a 'shock' for a well defined phase difference, that can be used to define a wavefront of differentiation. We show how implementation of these ideas reproduce experimental features of vertebrate segmentation.
引用
收藏
页数:14
相关论文
共 54 条
[1]  
[Anonymous], 2007, The Origins of Genome Architecture
[2]   Collective Modes of Coupled Phase Oscillators with Delayed Coupling [J].
Ares, Saul ;
Morelli, Luis G. ;
Joerg, David J. ;
Oates, Andrew C. ;
Juelicher, Frank .
PHYSICAL REVIEW LETTERS, 2012, 108 (20)
[3]   A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation [J].
Aulehla, Alexander ;
Wiegraebe, Winfried ;
Baubet, Valerie ;
Wahl, Matthias B. ;
Deng, Chuxia ;
Taketo, Makoto ;
Lewandoski, Mark ;
Pourquie, Olivier .
NATURE CELL BIOLOGY, 2008, 10 (02) :186-U56
[4]   A mathematical investigation of a Clock and Wavefront model for somitogenesis [J].
Baker, RE ;
Schnell, S ;
Maini, PK .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 52 (04) :458-482
[5]   Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube [J].
Balaskas, Nikolaos ;
Ribeiro, Ana ;
Panovska, Jasmina ;
Dessaud, Eric ;
Sasai, Noriaki ;
Page, Karen M. ;
Briscoe, James ;
Ribes, Vanessa .
CELL, 2012, 148 (1-2) :273-284
[6]   CLOCK AND WAVEFRONT MODEL FOR CONTROL OF NUMBER OF REPEATED STRUCTURES DURING ANIMAL MORPHOGENESIS [J].
COOKE, J ;
ZEEMAN, EC .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 58 (02) :455-476
[7]   Single-Cell-Resolution Imaging of the Impact of Notch Signaling and Mitosis on Segmentation Clock Dynamics [J].
Delaune, Emilie A. ;
Francois, Paul ;
Shih, Nathan P. ;
Amacher, Sharon L. .
DEVELOPMENTAL CELL, 2012, 23 (05) :995-1005
[8]   A complex oscillating network of signaling genes underlies the mouse segmentation clock [J].
Dequeant, Mary-Lee ;
Glynn, Earl ;
Gaudenz, Karin ;
Wahl, Matthias ;
Chen, Jie ;
Mushegian, Arcady ;
Pourquie, Olivier .
SCIENCE, 2006, 314 (5805) :1595-1598
[9]   fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo [J].
Dubrulle, J ;
Pourquié, O .
NATURE, 2004, 427 (6973) :419-422
[10]   FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation [J].
Dubrulle, J ;
McGrew, MJ ;
Pourquié, O .
CELL, 2001, 106 (02) :219-232