CONFORMALLY FLAT CONTACT THREE-MANIFOLDS

被引:3
|
作者
Cho, Jong Taek [1 ]
Yang, Dong-Hee [2 ]
机构
[1] Chonnam Natl Univ, Dept Math, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Grad Sch, Dept Math & Stat, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
contact three-manifolds; conformally flat metrics; VECTOR FIELD;
D O I
10.1017/S1446788716000471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider contact metric three-manifolds (M; eta, g, phi,xi) which satisfy the condition del xi h = mu h phi+nu h for some smooth functions mu and nu, where 2h = pound xi phi. We prove that if M is conformally flat and if mu is constant, then M is either a flat manifold or a Sasakian manifold of constant curvature + 1. We cannot extend this result for a smooth function mu. Indeed, we give such an example of a conformally flat contact three-manifold which is not of constant curvature.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条