CONFORMALLY FLAT CONTACT THREE-MANIFOLDS

被引:3
|
作者
Cho, Jong Taek [1 ]
Yang, Dong-Hee [2 ]
机构
[1] Chonnam Natl Univ, Dept Math, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Grad Sch, Dept Math & Stat, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
contact three-manifolds; conformally flat metrics; VECTOR FIELD;
D O I
10.1017/S1446788716000471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider contact metric three-manifolds (M; eta, g, phi,xi) which satisfy the condition del xi h = mu h phi+nu h for some smooth functions mu and nu, where 2h = pound xi phi. We prove that if M is conformally flat and if mu is constant, then M is either a flat manifold or a Sasakian manifold of constant curvature + 1. We cannot extend this result for a smooth function mu. Indeed, we give such an example of a conformally flat contact three-manifold which is not of constant curvature.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [1] CONFORMALLY BENDING THREE-MANIFOLDS WITH BOUNDARY
    Gursky, Matthew
    Streets, Jeffrey
    Warren, Micah
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (07) : 2421 - 2447
  • [2] WEAKLY-EINSTEIN CONDITIONS OVER LOCALLY CONFORMALLY FLAT LORENTZIAN THREE-MANIFOLDS
    Atashpeykar, Parvane
    Zaeim, Amirhesam
    Haji-badali, Ali
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 91 (02) : 183 - 198
  • [3] On conformally flat contact metric manifolds
    Gouli-Andreou F.
    Tsolakidou N.
    Journal of Geometry, 2004, 79 (1-2) : 75 - 88
  • [4] Conformally flat contact metric manifolds
    Ghosh A.
    Koufogiorgos T.
    Sharma R.
    Journal of Geometry, 2001, 70 (1) : 66 - 76
  • [5] THREE-MANIFOLDS WITH MANY FLAT PLANES
    Bettiol, Renato G.
    Schmidt, Benjamin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (01) : 669 - 693
  • [6] Taut contact hyperbolas on three-manifolds
    Domenico Perrone
    Annals of Global Analysis and Geometry, 2021, 60 : 735 - 765
  • [7] Conformally flat quasi contact metric manifolds
    Malek, Fereshteh
    Hojati, Rezvan
    JOURNAL OF GEOMETRY, 2024, 115 (02)
  • [8] On Conformally Flat Almost Contact Metric Manifolds
    David E. Blair
    Handan Yıldırım
    Mediterranean Journal of Mathematics, 2016, 13 : 2759 - 2770
  • [9] On Conformally Flat Almost Contact Metric Manifolds
    Blair, David E.
    Yildirim, Handan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2759 - 2770
  • [10] Taut contact hyperbolas on three-manifolds
    Perrone, Domenico
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 60 (03) : 735 - 765